Skip to main content
Log in

Synthesis of acyclic and cyclic phosphonates based on substituted 2-hydroxybenzylic alcohols

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A convenient synthesis of benzylic phosphonates and 2,3-dihydrobenzo[d][1,2]oxaphosphole 2-oxides substituted at the aromatic ring, as well as their precursors, 2-hydroxybenzylic alcohols, from the derivatives of salicylic aldehyde, salicylic acid, and 2-hydroxyacetophenone bearing an additional hydroxy or methoxy group at the para position of the aromatic ring was developed. For the first time, the possibility of selective demethylation of the methoxy group positioned ortho to the methylene phosphonate fragment with retention of the methoxy group at the para position was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Rott, H. Steinmetz, J. W. Metzger, Sci. Total Environ., 2018, 615, 1176; DOI: https://doi.org/10.1016/j.scitotenv.2017.09.223.

    Article  CAS  Google Scholar 

  2. U. Pradere, E. C. Garnier-Amblard, S. J. Coats, F. Amblard, R. F. Schinazi, Chem. Rev., 2014, 114, 9154; DOI: https://doi.org/10.1021/cr5002035.

    Article  CAS  Google Scholar 

  3. R. M. N. Kalla, H. R. Lee, J. Cao, J.-W. Yoo, I. Kim, New J. Chem., 2015, 39, 3916; DOI: https://doi.org/10.1039/C5NJ00312A.

    Article  CAS  Google Scholar 

  4. Z. Rádai, T. Windt, V. Nagy, A. Füredi, N. Z. Kiss, I. Ranđelović, J. Tóvári, G. Keglevich, G. Szakács, S. Tóth, New J. Chem., 2019, 43, 14028; DOI: https://doi.org/10.1039/C9NJ02144B.

    Article  Google Scholar 

  5. G. P. Horsman, D. L. Zechel, Chem. Rev., 2017, 117, 5704; DOI: https://doi.org/10.1021/acs.chemrev.6b00536.

    Article  CAS  Google Scholar 

  6. V. A. Erdmann, Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications, Springer-Verlag, Berlin—Heidelberg, 2014, 599 pp.

    Book  Google Scholar 

  7. M. Mikołajczyk, Pure Appl. Chem., 2019, 91, 811; DOI: https://doi.org/10.1515/pac-2018-1117.

    Article  Google Scholar 

  8. J. A. Bisceglia, L. R. Orelli, Curr. Org. Chem., 2015, 19, 744; DOI: https://doi.org/10.2174/1385272819666150311231006.

    Article  CAS  Google Scholar 

  9. J.-N. Volle, R. Guillon, F. Bancel, Y.-A. Bekro, J.-L. Pirat, D. Virieux, Adv. Heterocycl. Chem., 2016, 118, 129–193; DOI: https://doi.org/10.1016/bs.aihch.2015.10.004.

    Article  CAS  Google Scholar 

  10. N. Venkatesan, B. Kim, Curr. Med. Chem., 2002, 9, 2243–2270; DOI: https://doi.org/10.2174/0929867023368692.

    Article  CAS  Google Scholar 

  11. K. Gluza, P. Kafarski, in Drug Discovery, Ed. H. A. El-Shemy, InTech, 2013, p. 325–372; DOI: https://doi.org/10.5772/52504.

  12. C. S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev., 2011, 111, 7981–8006; DOI: https://doi.org/10.1021/cr2002646.

    CAS  Google Scholar 

  13. B. E. Ivanov, A. A. Ageeva, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1967, 16, 228; DOI: https://doi.org/10.1007/BF00907150.

    Article  Google Scholar 

  14. B. E. Ivanov, A. B. Ageeva, A. G. Abul’khanov, T. A. Zyablikova, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1969, 18, 1770; DOI: https://doi.org/10.1007/BF00905803.

    Article  Google Scholar 

  15. D. W. Chasar, J. Org. Chem., 1983, 48, 4768.

    Google Scholar 

  16. M. L. Belyanin, V. D. Filimonov, E. A. Krasnov, Russ. J. Appl. Chem., 2001, 74, 103; DOI https://doi.org/10.1023/A:1012708319679.

    Article  CAS  Google Scholar 

  17. H. Li, Y. Xiong, G. Zhang, Adv. Synth. Catal., 2018, 360, 4246; DOI: https://doi.org/10.1002/adsc.201800796.

    Article  CAS  Google Scholar 

  18. M. Bergner, D. C. Duquette, L. Chio, B. M. Stoltz, Org. Lett., 2015, 17, 3008; DOI: https://doi.org/10.1021/acs.orglett.5b01292.

    Article  CAS  Google Scholar 

  19. J. V. B. Kanth, M. Periasamy, J. Org. Chem., 1991, 56, 5964; DOI: https://doi.org/10.1021/jo00020a052.

    Article  CAS  Google Scholar 

  20. J. X. Zhang, Z. Y. Li, Y. C. Wang, W. B. Ma, M. Hou, S. H. Cao, K. H. Tang, H. B. Dong, J. Asian Nat. Prod. Res., 2017, 19, 903; DOI: https://doi.org/10.1080/10286020.2016.1275583.

    Article  CAS  Google Scholar 

  21. S. Spatz, M. Korai, J. Org. Chem., 1959, 24, 1381; DOI: https://doi.org/10.1021/jo01091a633.

    Article  CAS  Google Scholar 

  22. O. Falana, M. E. Al-Farhan, P. M. Keehn, R. Stevenson, Tetrahedron Lett., 1994, 35, 65; DOI: https://doi.org/10.1016/0040-4039(94)88163-4.

    Article  CAS  Google Scholar 

  23. R. N. Mirrington, G. I. Feutrill, Org. Synth., 1973, 53, 90; DOI: https://doi.org/10.15227/orgsyn.053.0090.

    Article  CAS  Google Scholar 

  24. R. W. Hartmann, W. Schwarz, A. Heindl, H. Schoenenberger, J. Med. Chem., 1985, 28, 1295; DOI: https://doi.org/10.1021/jm00147a031.

    Article  CAS  Google Scholar 

  25. C. Proença, H. M. T. Albuquerque, D. Ribeiro, M. Freitas, C. M. M. Santos, A. M. S. Silva, Eur. J. Med. Chem., 2016, 115, 381; DOI https://doi.org/10.1016/j.ejmech.2016.03.043.

    Article  Google Scholar 

  26. X. Ma, Q. Xu, H. Li, C. Su, L. Yu, X. Zhang, H. Cao, L. B. Han, Green Chem., 2018, 20, 3408–3413; DOI: https://doi.org/10.1039/c8gc00931g.

    Article  CAS  Google Scholar 

  27. T. Basak, K. Grudzień, M. Barbasiewicz, Eur. J. Inorg. Chem., 2016, 3513; DOI: https://doi.org/10.1002/ejic.201600435.

  28. D. Eom, Y. Jeong, Y. R. Kim, E. Lee, W. Choi, P. H. Lee, Org. Lett., 2013, 15, 5210; DOI: https://doi.org/10.1021/ol402736v.

    Article  CAS  Google Scholar 

  29. S. Biswas, A. Ghosh, R. V. Venkateswaran, Synth. Commun., 1991, 21, 1865; DOI: https://doi.org/10.1080/00397919108021777.

    Article  CAS  Google Scholar 

  30. V. C. Purohit, S. P. Allwein, R. P. Bakale, Org. Lett., 2013, 15, 1650; DOI: https://doi.org/10.1021/ol400432x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tatarinov.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 19-33-50091) and the Ministry of Science and Higher Education of the Russian Federation. D. A. Tatarinov and V. F. Mironov are grateful for the financial support from the government assignment Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2147—2152, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhova, N.V., Tatarinov, D.A., Mikulenkova, E.A. et al. Synthesis of acyclic and cyclic phosphonates based on substituted 2-hydroxybenzylic alcohols. Russ Chem Bull 69, 2147–2152 (2020). https://doi.org/10.1007/s11172-020-3013-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-3013-2

Key words

Navigation