Skip to main content
Log in

Tetra-, hexa-, and octanitrogen molecules: a quantum chemical design and thermodynamic properties

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The possibility for tetra-, hexa-, octa-, and decanitrogen to exist was analyzed using the QCISD(T)/TZVP and G4 quantum chemical calculations. The results obtained suggest the existence of only four allotropes of nitrogen whose molecules contain from four to eight atoms, viz., rectangular and tetrahedral N4, open-book N6, and cubic N8. The bond lengths and bond angles were calculated for all compounds, as well as selected thermodynamic parameters (standard enthalpy of formation ΔfHo, standard entropy of formation So, standard Gibbs energy of formation ΔfGo) of the compounds in the gas phase. The enthalpies and entropies of the oxidation reactions of each compound by molecular oxygen were calculated using the results of quantum chemical computations. All the oxidation reactions are highly exothermic and practically irreversible; therefore, the title allotropes of nitrogen may appear to be promising combustible materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khimicheskaya entsiklopediya [The Chemical Encyclopedia], Vol. 1, Sov. Entsiklopediya, Moscow, 1988, p. 58 (in Russian).

  2. F. Cacace, G. de Petris, A. Troiani, Science, 2002, 295, 480.

    Article  CAS  Google Scholar 

  3. M. M. Francl, J. P. Chesick, J. Phys. Chem., 1990, 94, 526.

    Article  CAS  Google Scholar 

  4. A. A. Bliznyuk, M. Shen, H. F. Schaefer III, Chem. Phys. Lett., 1992, 198, 249.

    Article  CAS  Google Scholar 

  5. T.-K. Ha, O. Suleimenov, M. T. Nguyen, Chem. Phys. Lett., 1999, 315, 327.

    Article  CAS  Google Scholar 

  6. S. L. Qian, L. J. Wang, W. G. Xu, Theor. Chem. Acc., 2000, 104, 67.

    Article  Google Scholar 

  7. H.-X. Duan, S. L. Qian, Chem. Phys. Lett., 2006, 432, 331.

    Article  CAS  Google Scholar 

  8. W. J. Lauderdale, J. F. Stanton, R. J. Bartlett, J. Phys. Chem., 1992, 96, 1173.

    Article  CAS  Google Scholar 

  9. M. Tobita, R. J. Bartlett, J. Phys. Chem. A, 2001, 105, 4107.

    Article  CAS  Google Scholar 

  10. M. T. Nguyen, Coord. Chem. Rev., 2003, 244, 93.

    Article  CAS  Google Scholar 

  11. A. Smirnov, D. Lempert, T. Pivina, D. Khakimov, Centr. Eur. J. Energ. Mater., 2011, 8, 233.

    CAS  Google Scholar 

  12. V. F. Elesin, N. N. Degtyarenko, K. S. Pazhitnykh, N. V. Matveev, Russ. Phys. J., 2009, 52, 1224.

    Article  CAS  Google Scholar 

  13. X. Wang, F. Tian, L. Wang, T. Cui, B. Liu, J. Chem. Phys., 2010, 132, 024502.

    Article  Google Scholar 

  14. L. Türker, Defence Technol., 2018, 14, 19.

    Article  Google Scholar 

  15. L. Türker, Defence Technol., 2019, 15, 154.

    Article  Google Scholar 

  16. L. J. Wang, P. G. Mezey, M. Z. Zgierski, Chem. Phys. Lett., 2004, 391, 338.

    Article  CAS  Google Scholar 

  17. B. M. Gimarc, M. Zhao, Inorg. Chem., 1996, 35, 3289.

    Article  CAS  Google Scholar 

  18. T. M. Klapötke, R. D. Harcourt, J. Mol. Struct. (Theochem), 2001, 541, 237.

    Article  Google Scholar 

  19. M. Noyman, S. Zilberg, Y. Haas, J. Phys. Chem. A, 2009, 113, 7376.

    Article  CAS  Google Scholar 

  20. P. C. Samartzis, A. M. Woodtke, Inter. Rev. Phys. Chem., 2006, 25, 1952.

    Article  Google Scholar 

  21. E. G. Lewars, Modeling Marvels: Computational Anticipation of Novel Molecules, Springer Science+Business Media, 2008, p. 141.

  22. G. Zhou, J.-L. Zhang, N.-B. Wong, J. Mol. Struct. (Theochem), 2004, 668, 189.

    Article  CAS  Google Scholar 

  23. J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys., 1987, 87, 5968.

    Article  CAS  Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  25. L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys., 2007, 126, 084108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Mikhailov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2067—2072, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chachkov, D.V., Mikhailov, O.V. Tetra-, hexa-, and octanitrogen molecules: a quantum chemical design and thermodynamic properties. Russ Chem Bull 69, 2067–2072 (2020). https://doi.org/10.1007/s11172-020-3001-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-3001-6

Key words

Navigation