Skip to main content
Log in

Various Equivalence Relations in Global Bifurcation Theory

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We discuss various definitions of equivalence for bifurcations of vector fields on the sphere and give a large number of examples (both known and new) that illustrate the advantages and disadvantages of different definitions. In addition to the classical definitions of strong and weak equivalence, we consider new notions of Sing-equivalence and moderate equivalence. These definitions seem to be more relevant to and consistent with the intuitive notion of equivalent bifurcations. They were introduced and used to describe the structural instability of some finite-parameter families of vector fields on the sphere and to study invariants of their classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. B. L. Shleifman, “Topology of deformations of complex parabolic germs” (in preparation).

References

  1. A. A. Andronov and E. A. Leontovich, “Generation of limit cycles from a separatrix forming a loop and from the separatrix of an equilibrium state of saddle–node type,” Am. Math. Soc. Transl., Ser. 2, 33, 189–231 (1963) [transl. from Mat. Sb. 48 (3), 335–376 (1959)].

    MATH  Google Scholar 

  2. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems (Nauka, Moscow, 1966; J. Wiley & Sons, New York, 1973).

    MATH  Google Scholar 

  3. V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations (Nauka, Moscow, 1978). Engl. transl.: Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, New York, 1983), Grundl. Math. Wiss. 250.

    Google Scholar 

  4. V. I. Arnol’d, V. S. Afraimovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, “Bifurcation theory,” Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 5, 5–218 (1986). Engl. transl. in Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (Springer, Berlin, 1994), Encycl. Math. Sci. 5, pp. 1–205.

    MathSciNet  Google Scholar 

  5. C. Camacho, “On the local structure of conformal mappings and holomorphic vector fields in \(\mathbf C^2\),” in Journées singulières de Dijon, 12–16 juin 1978 (Soc. Math. France, Paris, 1978), Astérisque 59–60, pp. 83–94.

    MathSciNet  MATH  Google Scholar 

  6. A. V. Dukov, “Bifurcations of the ‘heart’ polycycle in generic 2-parameter families,” Trans. Moscow Math. Soc. 2018, 209–229 (2018) [transl. from Tr. Mosk. Mat. Obshch. 79 (2), 247–269 (2018)].

    Article  MathSciNet  Google Scholar 

  7. F. Dumortier, J. Llibre, and J. C. Artés, Qualitative Theory of Planar Differential Systems (Springer, Berlin, 2006), Universitext.

    MATH  Google Scholar 

  8. J. Ecalle, Les fonctions résurgentes, Vol. 1: Les algèbres de fonctions résurgentes (Univ. Paris-Sud, Dép. Math., Orsay, 1981), Publ. Math. Orsay 81-05.

    MATH  Google Scholar 

  9. R. M. Fedorov, “Upper bounds for the number of orbital topological types of planar polynomial vector fields ‘modulo limit cycles’,” Proc. Steklov Inst. Math. 254, 238–254 (2006) [transl. from Tr. Mat. Inst. Steklova 254, 254–271 (2006)].

    Article  Google Scholar 

  10. N. Goncharuk and Yu. Ilyashenko, “Large bifurcation supports,”arXiv: 1804.04596 [math.DS].

  11. N. Goncharuk, Yu. Ilyashenko, and N. Solodovnikov, “Global bifurcations in generic one-parameter families with a parabolic cycle on \(S^2\),” Moscow Math. J. 19 (4), 709–737 (2019); arXiv: 1707.09779 [math.DS].

    Article  MathSciNet  Google Scholar 

  12. N. Goncharuk and Yu. Kudryashov, “Bifurcations of the polycycle ‘tears of the heart’: Multiple numerical invariants,” Moscow Math. J. 20 (2), 323–341 (2020); arXiv: 1808.07459 [math.DS].

    Article  MathSciNet  Google Scholar 

  13. N. Goncharuk and Yu. G. Kudryashov, “Families of vector fields with many numerical invariants,”arXiv: 2003.01269 [math.DS].

  14. N. Goncharuk, Yu. G. Kudryashov, and N. Solodovnikov, “New structurally unstable families of planar vector fields,” Nonlinearity (in press); arXiv: 1908.02693 [math.DS].

    Google Scholar 

  15. Y. Ilyashenko, “Towards the general theory of global planar bifurcations,” in Mathematical Sciences with Multidisciplinary Applications: In honor of Prof. C. Rousseau. And in Recognition of the Mathematics for Planet Earth Initiative, Ed. by B. Toni (Springer, Cham, 2016), Springer Proc. Math. Stat. 157, pp. 269–299.

    Article  Google Scholar 

  16. Yu. Ilyashenko, Yu. Kudryashov, and I. Schurov, “Global bifurcations in the two-sphere: A new perspective,” Invent. Math. 213 (2), 461–506 (2018).

    Article  MathSciNet  Google Scholar 

  17. Yu. Ilyashenko and N. Solodovnikov, “Global bifurcations in generic one-parameter families with a separatrix loop on \(S^2\),” Moscow Math. J. 18 (1), 93–115 (2018).

    Article  MathSciNet  Google Scholar 

  18. A. Kotova and V. Stanzo, “On few-parameter generic families of vector fields on the two-dimensional sphere,” in Concerning the Hilbert 16th Problem (Am. Math. Soc., Providence, RI, 1995), AMS Transl., Ser. 2, 165, pp. 155–201.

    MathSciNet  MATH  Google Scholar 

  19. I. P. Malta and J. Palis, “Families of vector fields with finite modulus of stability,” in Dynamical Systems and Turbulence: Warwick 1980 (Springer, Berlin, 1981), Lect. Notes Math. 898, pp. 212–229.

    MathSciNet  MATH  Google Scholar 

  20. S. Newhouse, J. Palis, and F. Takens, “Bifurcations and stability of families of diffeomorphisms,” Publ. Math., Inst. Hautes Étud. Sci. 57, 5–71 (1983).

    Article  MathSciNet  Google Scholar 

  21. V. Sh. Roitenberg, “Nonlocal two-parameter bifurcations of vector fields on surfaces,” Cand. Sci. (Phys.–Math.) Dissertation (Yaroslav. Gos. Tekh. Univ., Yaroslavl, 2000).

  22. R. Roussarie, “On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields,” Bol. Soc. Bras. Mat. 17 (1), 67–101 (1986).

    Article  MathSciNet  Google Scholar 

  23. R. Roussarie, “Weak and continuous equivalences for families of line diffeomorphisms,” in Dynamical Systems and Bifurcation Theory: Proc. Meet., Rio de Janeiro, 1985 (Longman Sci. Tech., Harlow, 1987), Pitman Res. Notes Math. Ser. 160, pp. 377–385.

    MathSciNet  MATH  Google Scholar 

  24. A. A. Shcherbakov, “Topological classification of germs of conformal mappings with identical linear part,” Moscow Univ. Math. Bull. 37 (3), 60–65 (1982) [transl. from Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 3, 52–57 (1982)].

    MathSciNet  MATH  Google Scholar 

  25. V. Starichkova, “Global bifurcations in generic one-parameter families on \(\mathbb S^2\),” Regul. Chaotic Dyn. 23 (6), 767–784 (2018).

    Article  MathSciNet  Google Scholar 

  26. F. Takens, “Normal forms for certain singularities of vector fields,” Ann. Inst. Fourier 23 (2), 163–195 (1973).

    Article  MathSciNet  Google Scholar 

  27. S. M. Voronin, “Analytic classification of germs of conformal mappings \((\mathbf C,0)\to (\mathbf C,0)\) with identity linear part,” Funct. Anal. Appl. 15 (1), 1–13 (1981) [transl. from Funkts. Anal. Prilozh. 15 (1), 1–17 (1981)].

    Article  Google Scholar 

Download references

Funding

This work was supported by the HSE Laboratory of Dynamical Systems and Applications (under grant 075-15-2019-1931 of the Ministry of Science and Higher Education of the Russian Federation) and by the Russian Foundation for Basic Research (project no. 20-01-00420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Goncharuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharuk, N.B., Ilyashenko, Y.S. Various Equivalence Relations in Global Bifurcation Theory. Proc. Steklov Inst. Math. 310, 78–97 (2020). https://doi.org/10.1134/S0081543820050065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820050065

Keywords

Navigation