Skip to main content
Log in

Local Adiabatic Invariants Near a Homoclinic Set of a Slow–Fast Hamiltonian System

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

In slow–fast systems, fast variables change at a rate of the order of one, and slow variables, at a rate of the order of \(\varepsilon\ll 1\). The system obtained for \(\varepsilon=0\) is said to be frozen. If the frozen (fast) system has one degree of freedom, then in the region where the level curves of the frozen Hamiltonian are closed there exists an adiabatic invariant. A. Neishtadt showed that near a separatrix of the frozen system the adiabatic invariant exhibits quasirandom jumps of order \(\varepsilon\). In this paper we partially extend Neishtadt’s result to the multidimensional case. We show that if the frozen system has a hyperbolic critical point possessing several transverse homoclinics, then for small \(\varepsilon\) there exist trajectories shadowing homoclinic chains. The slow variables evolve in a quasirandom way, shadowing trajectories of systems with Hamiltonians similar to adiabatic invariants. This paper extends the work of V. Gelfreich and D. Turaev, who considered similar phenomena away from critical points of the frozen Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (URSS, Moscow, 2002). Engl. transl.: Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006), Encycl. Math. Sci. 3.

    MATH  Google Scholar 

  2. P. Bernard, V. Kaloshin, and K. Zhang, “Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders,” Acta Math. 217 (1), 1–79 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. V. Bolotin, “Libration motions of natural dynamical systems,” Vestn. Mosk. Univ. Ser. 1: Mat., Mekh., No. 6, 72–77 (1978).

    MathSciNet  MATH  Google Scholar 

  4. S. Bolotin, “Symbolic dynamics of almost collision orbits and skew products of symplectic maps,” Nonlinearity 19 (9), 2041–2063 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. V. Bolotin, “Jumps of energy near a separatrix in slow–fast Hamiltonian systems,” Russ. Math. Surv. 73 (4), 725–727 (2018) [transl. from Usp. Mat. Nauk 73 (4), 171–172 (2018)].

    Article  MATH  Google Scholar 

  6. S. V. Bolotin, “Jumps of energy near a homoclinic set of a slowly time dependent Hamiltonian system,” Regul. Chaotic Dyn. 24 (6), 682–703 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bolotin and P. Negrini, “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system,” Regul. Chaotic Dyn. 18 (6), 774–800 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. V. Bolotin and P. H. Rabinowitz, “A variational construction of chaotic trajectories for a reversible Hamiltonian system,” J. Diff. Eqns. 148 (2), 364–387 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. V. Bolotin and D. V. Treschev, “The anti-integrable limit,” Russ. Math. Surv. 70 (6), 975–1030 (2015) [transl. from Usp. Mat. Nauk 70 (6), 3–62 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Brännström, E. de Simone, and V. Gelfreich, “Geometric shadowing in slow–fast Hamiltonian systems,” Nonlinearity 23 (5), 1169–1184 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Delshams, M. Gidea, and P. Roldán, “Transition map and shadowing lemma for normally hyperbolic invariant manifolds,” Discrete Contin. Dyn. Syst. 33, 1089–1112 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Delshams, R. de la Llave, and T. M. Seara, “Geometric properties of the scattering map of a normally hyperbolic invariant manifold,” Adv. Math. 217 (3), 1096–1153 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Gelfreich and D. Turaev, “Unbounded energy growth in Hamiltonian systems with a slowly varying parameter,” Commun. Math. Phys. 283 (3), 769–794 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Gidea and R. de la Llave, “Perturbations of geodesic flows by recurrent dynamics,” J. Eur. Math. Soc. 19 (3), 905–956 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Kaloshin and K. Zhang, “Arnold diffusion for smooth convex systems of two and a half degrees of freedom,” Nonlinearity 28 (8), 2699–2720 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. V. Kozlov, “Calculus of variations in the large and classical mechanics,” Russ. Math. Surv. 40 (2), 37–71 (1985) [transl. from Usp. Mat. Nauk 40 (2), 33–60 (1985)].

    Article  MathSciNet  MATH  Google Scholar 

  17. X. Li and C.-Q. Cheng, “Connecting orbits of autonomous Lagrangian systems,” Nonlinearity 23 (1), 119–141 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. I. Neishtadt, “On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom,” J. Appl. Math. Mech. 51 (5), 586–592 (1987) [transl. from Prikl. Mat. Mekh. 51 (5), 750–757 (1987)].

    Article  MathSciNet  Google Scholar 

  19. A. I. Neishtadt, A. A. Vasiliev, and A. V. Artemyev, “Capture into resonance and escape from it in a forced nonlinear pendulum,” Regul. Chaotic Dyn. 18 (6), 686–696 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. N. Piftankin and D. V. Treschev, “Separatrix maps in Hamiltonian systems,” Russ. Math. Surv. 62 (2), 219–322 (2007) [transl. from Usp. Mat. Nauk 62 (2), 3–108 (2007)].

    Article  MathSciNet  MATH  Google Scholar 

  21. L. P. Shilnikov and D. V. Turaev, “Super-homoclinic orbits and multi-pulse homoclinic loops in Hamiltonian systems with discrete symmetries,” Regul. Chaotic Dyn. 2 (3–4), 126–138 (1997).

    MathSciNet  MATH  Google Scholar 

  22. D. Treschev, “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems,” Nonlinearity 15 (6), 2033–2052 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Treschev, “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems,” Nonlinearity 25 (9), 2717–2757 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Treschev and O. Zybelevich, Introduction to the Perturbation Theory of Hamiltonian Systems (Springer, Berlin, 2010), Springer Monogr. Math.

    Book  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation under grant 19-71-30012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Bolotin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotin, S.V. Local Adiabatic Invariants Near a Homoclinic Set of a Slow–Fast Hamiltonian System. Proc. Steklov Inst. Math. 310, 12–24 (2020). https://doi.org/10.1134/S0081543820050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820050028

Navigation