Skip to main content
Log in

\(\mu\)-Norm of an Operator

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Let \((\mathcal X,\mu)\) be a measure space. For any measurable set \(Y\subset\mathcal X\) let \(\mathbf 1_Y: \mathcal X\to{\mathbb R}\) be the indicator of \(Y\) and let \(\pi_Y^{}\) be the orthogonal projection \(L^2(\mathcal X)\ni f\mapsto{\pi_Y^{}}_{} f = \mathbf 1_Y f\). For any bounded operator \(W\) on \(L^2(\mathcal X,\mu)\) we define its \(\mu\)-norm \(\|W\|_\mu = \inf_\chi\sqrt{\sum\mu(Y_j)\|W\pi_Y^{}\|^2}\), where the infimum is taken over all measurable partitions \(\chi=\{Y_1,\dots,Y_J\}\) of \(\mathcal X\). We present some properties of the \(\mu\)-norm and some computations. Our main motivation is the problem of constructing a quantum entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, a seminorm.

  2. This subadditivity is important for the existence of the limit (1.8).

  3. The quantity on the right-hand side of (3.2) equals the trace of \(W^*W\) divided by \(J\). In particular, if \(W\) is unitary then \(\|W\|_\mu=1\). Below such and analogous quantities will be called the average trace of \(W^*W\).

  4. The number \(K\in{\mathbb N}\) and the points \(y_k\) depend on \(j\), but for brevity we do not indicate this in the notation.

References

  1. L. Accardi, M. Ohya, and N. Watanabe, “Note on quantum dynamical entropies,” Rep. Math. Phys. 38 (3), 457–469 (1996).

    Article  MathSciNet  Google Scholar 

  2. L. Accardi, M. Ohya, and N. Watanabe, “Dynamical entropy through quantum Markov chains,” Open Syst. Inf. Dyn. 4 (1), 71–87 (1997).

    Article  Google Scholar 

  3. R. Alicki and M. Fannes, Quantum Dynamical Systems (Oxford Univ. Press, Oxford, 2001).

    Book  Google Scholar 

  4. C. Beck and D. Graudenz, “Symbolic dynamics of successive quantum-mechanical measurements,” Phys. Rev. A 46 (10), 6265–6276 (1992).

    Article  MathSciNet  Google Scholar 

  5. A. Connes, H. Narnhofer, and W. Thirring, “Dynamical entropy of \(C^*\) algebras and von Neumann algebras,” Commun. Math. Phys. 112 (4), 691–719 (1987).

    Article  MathSciNet  Google Scholar 

  6. T. M. Cover and J. A. Thomas, Elements of Information Theory (J. Wiley & Sons, New York, 1991).

    Book  Google Scholar 

  7. T. Downarowicz and B. Frej, “Measure-theoretic and topological entropy of operators on function spaces,” Ergodic Theory Dyn. Syst. 25 (2), 455–481 (2005).

    Article  MathSciNet  Google Scholar 

  8. R. M. Dudley, Real Analysis and Probability, 2nd ed. (Cambridge Univ. Press, Cambridge, 2002), Cambridge Stud. Adv. Math. 74.

    Book  Google Scholar 

  9. M. B. Feldman, “A proof of Lusin’s theorem,” Am. Math. Mon. 88, 191–192 (1981).

    Article  MathSciNet  Google Scholar 

  10. B. Frej and D. Huczek, “Doubly stochastic operators with zero entropy,” Ann. Funct. Anal. 10 (1), 144–156 (2019); arXiv: 1803.07882v1 [math.DS].

    Article  MathSciNet  Google Scholar 

  11. É. Ghys, R. Langevin, and P. Walczak, “Entropie mesurée et partitions de l’unité,” C. R. Acad. Sci., Paris, Sér. I 303 (6), 251–254 (1986).

    MathSciNet  MATH  Google Scholar 

  12. B. Kollár and M. Koniorczyk, “Entropy rate of message sources driven by quantum walks,” Phys. Rev. A 89 (2), 022338 (2014).

    Article  Google Scholar 

  13. I. I. Makarov, “Dynamical entropy for Markov operators,” J. Dyn. Control Syst. 6 (1), 1–11 (2000).

    Article  MathSciNet  Google Scholar 

  14. K. Maurin, Methods of Hilbert Spaces (PWN, Warszawa, 1967).

    MATH  Google Scholar 

  15. M. Ohya, “State change, complexity and fractal in quantum systems,” in Quantum Communications and Measurement (Plenum Press, New York, 1995), pp. 309–320.

    Article  MathSciNet  Google Scholar 

  16. M. Ohya, “Foundation of entropy, complexity and fractals in quantum systems,” in Probability Towards 2000: Proc. Symp., Columbia Univ., 1995 (Springer, New York, 1998), Lect. Notes Stat. 128, pp. 263–286.

    Article  MathSciNet  Google Scholar 

  17. P. Pechukas, “Kolmogorov entropy and ‘quantum chaos’,” J. Phys. Chem. 86 (12), 2239–2243 (1982).

    Article  Google Scholar 

  18. M. D. Srinivas, “Quantum generalization of Kolmogorov entropy,” J. Math. Phys. 19 (9), 1952–1961 (1978).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Treschev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treschev, D.V. \(\mu\)-Norm of an Operator. Proc. Steklov Inst. Math. 310, 262–290 (2020). https://doi.org/10.1134/S008154382005020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154382005020X

Navigation