Skip to main content
Log in

Investigation of Rotating Detonation Waves in an Annular Gap

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We formulate and numerically analyze the problem of formation of rotating three-dimensional detonation waves in an annular gap between parallel plates. It is assumed that a homogeneous combustible mixture contained in a reservoir with given stagnation parameters flows into the gap through elementary nozzles that uniformly fill the external ring bounding the gap. The gas dynamic parameters of the mixture are defined as functions of the stagnation parameters and the static pressure in the gap. In the absence of ignition, the mixture flows out into a half-closed axially symmetric volume bounded on one side by a flat disk (extension of one of the plates forming the gap). On the opposite side of the volume, a nozzle is attached, through which the mixture flows out into air at given pressure and temperature. Detonation is initiated by a directional explosion, i.e., by energy supply to the flow of the combustible mixture in a narrow area where it flows into the gap. We work out a method that allows the simultaneous initiation of several detonation waves rotating in a given direction. For the considered geometric parameters of the flow region, the formation of one to four rotating detonation waves is observed. We analyze the stability of the process under the variation of the stagnation parameters of the mixture, and obtain data on the corresponding reactive force due to the jet of detonation products flowing out into air. We present the results of calculations for a propane–air mixture that are obtained within the single-stage combustion kinetics by a numerical method based on S. K. Godunov’s scheme and implemented in the original software system on the Lomonosov supercomputer at Moscow State University.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

References

  1. F. A. Bykovskii and S. A. Zhdan, “Current status of research of continuous detonation in fuel–air mixtures (review),” Combust. Explos. Shock Waves 51, 21–35 (2015) [transl. from Fiz. Goreniya Vzryva 51 (1), 31–46 (2015)].

    Article  Google Scholar 

  2. V. K. Chvanov, V. A. Levin, P. S. Levochkin, I. S. Manuilovich, V. V. Markov, and L. E. Sternin, “Three-dimensional calculation of gas-dynamic parameters of combustion products in an annular chamber of a liquid-propellant rocket engine with rotating detonation,” Tr. NPO Energomash Im. Akad. V. P. Glushko 32, 23–35 (2015).

    Google Scholar 

  3. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  4. V. P. Korobeinikov, V. A. Levin, V. V. Markov, and G. G. Chernyi, “Propagation of blast waves in a combustible gas,” Astronaut. Acta 17 (5–6), 529–537 (1972).

    Google Scholar 

  5. V. P. Korobeinikov and V. V. Markov, “On propagation of combustion and detonation,” Arch. Procesów Spalania 8 (1), 101–118 (1977).

    Google Scholar 

  6. V. A. Levin, I. S. Manuĭlovich, and V. V. Markov, “New effects of stratified gas detonation,” Dokl. Phys. 55 (1), 28–32 (2010) [transl. from Dokl. Akad. Nauk 430 (2), 185–188 (2010)].

    Article  Google Scholar 

  7. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Distinctive features of galloping detonation in a supersonic combustible-mixture flow under an inert gas layer,” Fluid Dyn. 45, 827–834 (2010) [transl. from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 167–175 (2010)].

    Article  MathSciNet  Google Scholar 

  8. V. A. Levin, I. S. Manuĭlovich, and V. V. Markov, “Formation of detonation in rotating channels,” Dokl. Phys. 55 (6), 308–311 (2010) [transl. from Dokl. Akad. Nauk 432 (6), 775–778 (2010)].

    Article  Google Scholar 

  9. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Detonation initiation by rotation of an elliptic cylinder inside a circular cylinder and deformation of the channel walls,” J. Appl. Mech. Tech. Phys. 51, 463–470 (2010) [transl. from Prikl. Mekh. Tekh. Fiz. 51 (4), 17–25 (2010)].

    Article  Google Scholar 

  10. V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Mathematical modeling of shock-wave processes under gas–solid boundary interaction,” Proc. Steklov Inst. Math. 281, 37–48 (2013) [transl. from Tr. Mat. Inst. Steklova 281, 42–54 (2013)].

    Article  MathSciNet  Google Scholar 

  11. V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Numerical simulation of spinning detonation in circular section channels,” Comput. Math. Math. Phys. 56, 1102–1117 (2016) [transl. from Zh. Vychisl. Mat. Mat. Fiz. 56 (6), 1122–1137 (2016)].

    Article  MathSciNet  Google Scholar 

  12. V. A. Levin, I. S. Manuylovich, and V. V. Markov, “Rotating detonation wave in an annular gap,” Proc. Steklov Inst. Math. 300, 126–136 (2018) [transl. from Tr. Mat. Inst. Steklova 300, 135–145 (2018)].

    Article  MathSciNet  Google Scholar 

  13. V. A. Levin and V. V. Markov, “Initiation of detonation by concentrated release of energy,” Combust. Explos. Shock Waves 11, 529–536 (1975) [transl. from Fiz. Goreniya Vzryva 11 (4), 623–633 (1975)].

    Article  Google Scholar 

  14. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Simulation of detonation initiation in a combustible mixture of gases by an electric discharge,” Sov. J. Chem. Phys. 3, 917–920 (1985) [transl. from Khim. Fiz. 3 (4), 611–614 (1984)].

    Google Scholar 

  15. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Direct initiation of detonation in a hydrogen–oxygen mixture diluted with nitrogen,” Fluid Dyn. 27, 873–876 (1992) [transl. from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 151–156 (1992)].

    Article  Google Scholar 

  16. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Initiation of detonation in hydrogen–air mixture by explosion of a spherical TNT charge,” Combust. Explos. Shock Waves 31, 207–210 (1995) [transl. from Fiz. Goreniya Vzryva 31 (2), 91–95 (1995)].

    Article  Google Scholar 

  17. V. A. Levin, V. V. Markov, and S. F. Osinkin, “Detonation wave reinitiation using a disintegrating shell,” Phys. Dokl. 42 (1), 25–27 (1997) [transl. from Dokl. Akad. Nauk 352 (1), 48–50 (1997)].

    Google Scholar 

  18. V. A. Levin, V. V. Markov, and S. F. Osinkin, “The effect of air interlayer on the shock initiation of detonation in a hydrogen–air mixture,” Proc. Steklov Inst. Math. 223, 131–138 (1998) [transl. from Tr. Mat. Inst. Steklova 223, 136–143 (1998)].

    MATH  Google Scholar 

  19. V. A. Levin, V. V. Markov, S. F. Osinkin, and T. A. Zhuravskaya, “Determination of critical conditions for detonation initiation in a finite volume by a converging shock wave,” Combust. Explos. Shock Waves 38, 693–699 (2002) [transl. from Fiz. Goreniya Vzryva 38 (6), 96–102 (2002)].

    Article  Google Scholar 

  20. V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, “Direct detonation initiation in a hydrogen–air mixture by a converging shock wave,” Khim. Fiz. 20 (5), 26–30 (2001).

    Google Scholar 

  21. V. V. Markov, “Numerical simulation of the formation of a multifrontal detonation-wave structure,” Sov. Phys., Dokl. 26, 503–505 (1981) [transl. from Dokl. Akad. Nauk SSSR 258 (2), 314–317 (1981)].

    MATH  Google Scholar 

  22. V. V. Mitrofanov and R. I. Soloukhin, “The diffraction of multifront detonation waves,” Sov. Phys., Dokl. 9, 1055–1058 (1965) [transl. from Dokl. Akad. Nauk SSSR 159 (5), 1003–1006 (1964)].

    Google Scholar 

  23. L. I. Sedov, V. P. Korobeĭnikov, and V. V. Markov, “The theory of propagation of blast waves,” Proc. Steklov Inst. Math. 175, 187–228 (1988) [transl. from Tr. Mat. Inst. Steklova 175, 178–216 (1986)].

    MATH  Google Scholar 

  24. R. I. Soloukhin, “Structure of a multifront detonation wave in a gas,” Combust. Explos. Shock Waves 1 (2), 23–29 (1965) [transl. from Fiz. Goreniya Vzryva 1 (2), 35–42 (1965)].

    Article  Google Scholar 

  25. Thermodynamic Properties of Individual Substances, Ed. by L. V. Gurvich and I. V. Veyts (Nauka, Moscow, 1978; Hemisphere, New York, 1989), Vol. 1, Part 2.

    Google Scholar 

  26. Vl. Voevodin, S. Zhumatii, S. Sobolev, A. Antonov, P. Bryzgalov, D. Nikitenko, K. Stefanov, and Vad. Voevodin, “Practice of the ‘Lomonosov’ Supercomputer,” Otkrytye Sistemy, SUBD, No. 7, 36–39 (2012).

    Google Scholar 

  27. C. K. Westbrook and F. L. Dryer, “Chemical kinetic modeling of hydrocarbon combustion,” Prog. Energy Combust. Sci. 10 (1), 1–57 (1984).

    Article  Google Scholar 

  28. T. A. Zhuravskaya, V. A. Levin, V. V. Markov, and S. F. Osinkin, “Effect of the decomposing shell on the formation of detonation in a bounded volume by a converging shock wave,” Khim. Fiz. 22 (8), 34–37 (2003).

    Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00883.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Levin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.A., Manuylovich, I.S. & Markov, V.V. Investigation of Rotating Detonation Waves in an Annular Gap. Proc. Steklov Inst. Math. 310, 185–201 (2020). https://doi.org/10.1134/S0081543820050156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820050156

Keywords

Navigation