Skip to main content
Log in

Identification Problems and Cryptic Diversity of Chlorella-Clade Microalgae (Chlorophyta)

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The article considers the system of the Chlorella-clade based on morphological, ecological, and molecular genetic data. Diagnostic characteristics of some genera and species are discussed, as well as the systematic position of some taxa. Molecular phylogenetic analysis of members of the Chlorella-clade showed that the use of only the 18S rRNA gene, which is considered the main phylogenetic marker for green microalgae, does not reliably distinguish species and genera within the clade. Application of more variable spacers ITS1 and ITS2 resolved the tree topology and strengthened the phylogenetic signal. The polyphyly of the genus Chlorella was confirmed. Some of the species of the genus Chlorella formed a true clade of Chlorella species, including the type species C. vulgaris, C. heliozoae, C. pituita, C. chlorelloides, C. variabilis, and Lobosphaeropsis lobophora. Other species (C. pulchelloides, C. colonials, C. rotunda, C. singularis, C. elongata, C. sorokiniana, C. lewinii, C. volutis, and C. thermophila) were found to belong to other groups, and their taxonomic affiliation requires clarification. The CBC approach and the search for compensatory mutations in conservative ITS2 regions as a tool for distinguishing species was not effective for most Chlorella-clade representatives. Efficiency of using the intron as a criterion for separating closely related species was confirmed. Analysis of genetic distances made it possible to clearly identify the strains as species of the genera Didymogenes, Hindakia, and Heynigia. Members of the Chlorella-clade are characterized by a high cryptic diversity: none of the phenotypic characteristics considered separately was sufficient for unequivocal determination of the taxonomic position of members of the clade. Some morphological features were variable, often changed or became lost after instrumental manipulations during sample preparation for the water bodies monitoring. Using a combination of morphological, biochemical, ultrastructural, physiological, ecological, and molecular genetic features (a polyphasic approach), we were able to characterize eight groups within the Chlorella-clade and to make assumptions about the division of the genera and species within these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bock, C., Krienitz, L., and Pröschold, T., Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species, Fottea, 2011a, vol. 11, pp. 293–312.

    Article  Google Scholar 

  2. Bock, C., Pažoutová, M., and Krienitz, L., Phylogenetic position of Coronastrum ellipsoideum and description of Parachlorella hussii sp. nov., Biologia, 2011b, vol. 66, pp. 585–594.

    Article  Google Scholar 

  3. Bock, C., Pröschold, T., and Krienitz, L., Two new Dictyosphaerium-morphotype lineages of the Chlorellaceae (Trebouxiophyceae): Heynigia gen. nov. and Hindakia gen. nov., Eur. J. Phycol., 2010, vol. 45, pp. 267–277.

    Article  CAS  Google Scholar 

  4. Caisová, L., Marin, B., and Melkonian, M., A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction, Protist, 2013, vol. 164, pp. 482–496.

    Article  Google Scholar 

  5. Coleman, A.W., The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence, Protist, 2000, vol. 151, pp. 1–9.

    Article  CAS  Google Scholar 

  6. Coleman, A.W., ITS2 is a double-edged tool for eukaryote evolutionary comparisons, Trends Genet., 2003, vol. 19, no. 7, pp. 370–375.

    Article  CAS  Google Scholar 

  7. Coleman, A.W., Is there a molecular key to the level of “biological species” in eukaryotes?, A DNA guide, Mol. Phylogenet. Evol., 2009, vol. 50, pp. 197–203.

    Article  CAS  Google Scholar 

  8. Chae, H., Lim, S., Kim, H., Choi, H.-G., and Kim, J.H., Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica, Algae, 2019, vol. 34, pp. 267–275.

    Article  Google Scholar 

  9. Darienko, T., Rad-Menéndez, C., Campbel, C., and Pröschold, T., Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov., Syst. Biodivers., 2019, vol. 17, pp. 811–829.

    Article  Google Scholar 

  10. Ettl, H. and Gärtner, G., Syllabus der Boden-, Luft- und Flechtenalgen, Stuttgart: Gustav Fischer, 1995.

    Google Scholar 

  11. Fawley, M.W., Dean, M.L., Dimmer, S.K., and Fawley, K.P., Evaluating the morphospecies concept in the Selenastraceae (Chlorophyceae, Chlorophyta), J. Phycol., 2006, vol. 42, pp. 142–154.

    Article  Google Scholar 

  12. Guiry, M.D. and Guiry, G.M., AlgaeBase. World-Wide Electronic Publication, Galway: National University of Ireland, 2020. http://www.algaebase.org.

    Google Scholar 

  13. Hindák, F., The chlorococcal algal genus Didymogenes Schmidle 1905, Biologia, 1974, vol. 29, pp. 559–570.

    Google Scholar 

  14. Hoshina, R. and Fujiwara, Y., Molecular characterization of Chlorella cultures of the National Institute for Environment Studies culture collection with description of Micractinium inermum sp. nov., Didymogenes sphaerica sp. nov. and Didymogenes soliella sp. nov. (Chlorellaceae, Trebouxiophyceae), Phycol.Res., 2013, vol. 61, pp. 124–132.

    CAS  Google Scholar 

  15. Hoshina, R., Iwataki, M., and Imamura, N., Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year, Phycol.Res., 2010, vol. 58, pp. 188–210.

    CAS  Google Scholar 

  16. Hoshina, R., Kobayashi, M., Suzaki, T., and Kusuoka, Y., Brandtia ciliaticola gen. et sp. nov. (Chlorellaceae, Trebouxiophyceae) a common symbiotic green coccoid of various ciliate species, Phycol.Res., 2017, vol. 66, pp. 76–81.

    Google Scholar 

  17. Hoshina, R. and Nakada, T., Carolibrandtia nom. nov. as a replacement name for Brandtia Hoshina (Chlorellaceae, Trebouxiophyceae), Phycol.Res., 2018, vol. 66, pp. 82–83.

    Google Scholar 

  18. Katana, A., Kwiatowski, J., Spalik, K., Zakryś, B., Szalacha, E., and Szymańska, H., Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA, J. Phycol., 2001, vol. 37, pp. 443–451.

    Article  CAS  Google Scholar 

  19. Komárek, J. and Fott B., Chlorophyceae (Grünalgen). Ordnung Chlorococcales, in Die Binnengewässer, Stuttgart: Huber-Pestalozzi, 1983, vol. 16, pt. 7 (1st half).

  20. Korneva, L.G., Fitoplankton vodokhranilishch basseina Volgi (Phytoplankton of Reservoirs of the Volga Basin), Kopylov, A.I., Ed., Kostroma: Kostromskoi Pechatnyi Dom, 2015.

    Google Scholar 

  21. Krienitz, L., Hegewald, E.H., Hepperle, D., Huss, V.A.R., Rohr, T., and Wolf, M., Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae), Phycologia, 2004, vol. 43, pp. 529–542.

    Article  Google Scholar 

  22. Krivina, E.S., Transformation of phytoplankton of small water bodies of urban territories under conditions of changing anthropogenic pressure, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Togliatti, 2018.

  23. Luo, W., Pflugmacher, S., Pröschold, T., Walz, N., and Krienitz, L., Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae), Protist, 2006, vol. 157, pp. 315–333.

    Article  CAS  Google Scholar 

  24. Luo, W., Pröschold, T., Bock, C., and Krienitz, L., Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae), Plant Biol., 2010, vol. 12, pp. 545–553.

    Article  CAS  Google Scholar 

  25. Ma, S., Han, B., Huss, V.A.R., Hu, X., Sun, X., and Zhang, J., Chlorella termophyla (Trebouxiophyceae, Chlorophyta), a novel thermo-tolerant Chlorella species isolated from an occupied rooftop incubator), Hydrobiologia, 2015, vol. 760, pp. 81–89.

    Article  CAS  Google Scholar 

  26. Metodika izucheniya biogeotsenozov vnutrennikh vodoemov (Methods of Studying Biogeocenoses of Inland Water Bodies), Mordukhai-Boltovskii, F.D., Ed., Moscow: Nauka, 1975.

  27. Müller, T., Philippi, N., Dandekar, T., Schultz, J., and Wolf, M., Distinguishing species, RNA, 2007, vol. 13, pp. 1469–1472.

    Article  Google Scholar 

  28. Pröschold, T., Bock, C., Luo, W., and Krienitz, L., Polyphyletic distribution of bristle formation in Chlorellaceae: Micractinium, Diacanthos, Didymogenes and Hegewaldia gen. nov. (Trebouxiophyceae, Chlorophyta), Phycol.Res., 2010, vol. 58, pp. 1–8.

    Google Scholar 

  29. Pröschold, T., Darienko, T., Silva, P. C., Reisser, W., and Krienitz, L., The systematics of “Zoochlorella” revisited employing an integrative approach, Environ. Microbiol., 2011, vol. 13, pp. 350–364.

    Article  Google Scholar 

  30. Shihira, I. and Krauss, R.W., Chlorella. Physiology and Taxonomy of Forty-One Isolates, Maryland: University of Maryland, College Park, 1965.

    Google Scholar 

  31. White, T.J., Bruns, T., Lee, S., and Taylor, J.W., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., San Diego: Acad. Press, 1990, vol. 3, pp. 315–322.

    Google Scholar 

  32. Wolf, M., Krienitz, L., and Hepperle, D., Phylogenetic position of Actinastrum hantzschii Lagerheim (Chlorophyta, Trebouxiophyceae), Algol. Stud., 2002, vol. 104, pp. 59–67.

    Google Scholar 

  33. Yamamoto, M., Kurihara, I., and Kawano, S., Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae), Planta, 2005, vol. 221, pp. 766–775.

    Article  CAS  Google Scholar 

  34. Zou, S., Fei, C., Song, J., Bao, Y., He, M., and Wang, C., Combining and comparing coalescent, distance and character-based approaches for barcoding microalgaes: a test with Chlorella-like species (Chlorophyta), PLoS One, 2016, vol. 11, pp. 1–24, e0153833.

Download references

ACKNOWLEDGMENTS

The authors are especially grateful to Dr. M.A. Sinetova, the Head of the IPPAS Collection of Microalgae and Cyanobacteria (Institute of Plant Physiology, Russian Academy of Sciences) for providing Chlorella sp. IPPAS C1210.

Funding

This study was funded by the Russian Foundation for Basic Research (project no. 19-34-60002) and was partially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A18-118013190177-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Krivina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Panyushkina

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivina, E.S., Temraleeva, A.D. Identification Problems and Cryptic Diversity of Chlorella-Clade Microalgae (Chlorophyta). Microbiology 89, 720–732 (2020). https://doi.org/10.1134/S0026261720060107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720060107

Keywords:

Navigation