Skip to main content
Log in

Investigation of Formation and Development of Anammox Biofilms by Light, Epifluorescence, and Electron Microscopy

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The stages of formation and development of activated sludge biofilm carrying out the anammox process in a laboratory sequencing batch reactor (SBR) with complete biomass retention on the carrier were investigated using light, epifluorescence, and electron microscopy. Light microscopy revealed biofilm formation on the carrier to occur within one week. Rod-shaped and filamentous microorganisms were the first to attach on the carrier and acted as a skeleton for biofilm formation, thus playing an important role in colonization of the carrier. Epifluorescence microscopy revealed physiologically active anammox bacteria of the genera Candidatus “Brocadia” and Ca. “Jettenia” in the biofilms. Selective autofluorescence of the colonies of anammox bacteria Ca. “Jettenia” was observed. This autofluorescence was probably caused by specific proteins in the extracellular polymeric substances (EPS), their synthesis and/or amount depending on the colony age and the physiological state of the cells. Structural organization of the colonies of anammox bacteria was investigated by electron microscopy. High-throughput sequencing of the 16S rRNA gene fragments revealed the presence of sequences affiliated with members of the phyla Chloroflexi, Bacteroidetes, Planctomycetes, and Proteobacteria in the biofilms. Apart from anammox bacteria, anaerobic and facultatively anaerobic organotrophs, stage I nitrifiers, denitrifiers, and sulfate reducers were detected. Members of the genus Ca. “Brocadia” were predominant among the anammox bacteria, probably due to better adhesion of their cells to the carrier or to their competitive advantage over Ca. “Jettenia” in the presence of organic acids (acetate and formate) in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ali, M., Shaw, D.R., Zhang, L., Haroon, M.F., Narita, Y., Emwas, A.-H., Saikaly, P.E., and Okabe, S., Aggregation ability of three phylogenetically distant anammox bacterial species, Water Res., 2018, vol. 143, pp. 10‒18.

    Article  CAS  PubMed  Google Scholar 

  2. Almstrand, R., Persson, F., Daims, H., Ekenberg, M., Christensson, M., Wilén, B.-M., Sörensson, F., and Hermansson, M., Three-dimensional stratification of bacterial biofilm populations in a moving bed biofilm reactor for nitritation-anammox, Int. J. Mol. Sci., 2014, vol. 15, pp. 2191‒2206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Boeije, G., Corstanje, R., Rottiers, A., and Schowanek, D., Adaptation of the CAS test system and synthetic sewage for biological nutrient removal. Part I: Development of a new synthetic sewage, Chemosphere, 1999, vol. 38, pp. 699‒709.

    Article  CAS  PubMed  Google Scholar 

  4. Boleij, M., Kleikamp, H., Pabst, M., Neu, T.R., van Loosdrecht, M.C.M., and Lin, Y., Decorating the anammox house: sialic acids and sulfated glycosaminoglycans in the extracellular polymeric substances of anammox granular sludge, Environ. Sci. Technol., 2020, vol. 54, pp. 5218‒5226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Böllmann, J., Engelbrecht, S., and Martienssen, M., Autofluorescent characteristics of Candidatus Brocadia fulgida and the consequences for FISH and microscopic detection, Syst. Appl. Microbiol., 2019, vol. 42, pp. 135‒144.

    Article  PubMed  CAS  Google Scholar 

  6. Botchkova, E.A., Plakunov, V.K., and Nozhevnikova, A.N., Dynamics of biofilm formation on microscopic slides submerged in an anammox bioreactor, Microbiology (Moscow), 2015, vol. 84, pp. 456–460.

    Article  CAS  Google Scholar 

  7. Chen, Z., Meng, Y., Sheng, B., Zhou, Z., Jin, C., and Meng, F., Linking exoproteome function and structure to anammox biofilm development, Environ. Sci. Technol., 2019, vol. 53, pp. 1490‒1500.

    Article  CAS  PubMed  Google Scholar 

  8. Ding, S., Zheng, P., Lu, H., Chen, J., Mahmood, Q., and Abbas, G., Ecological characteristics of anaerobic ammonia oxidizing bacteria, Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 1841–1849.

    Article  CAS  PubMed  Google Scholar 

  9. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  10. Feng, C., Lotti, T., Lin, Y., and Malpei, F., Extracellular polymeric substances extraction and recovery from anammox granules: evaluation of methods and protocol development, Chem. Eng. J., 2019b, vol. 374, pp. 112‒122.

    Article  CAS  Google Scholar 

  11. Feng, Y., Zhao, Y., Jiang, B., Zhao, H., Wang, Q., and Liu, S., Discrepant gene functional potential and cross-feedings of anammox bacteria Ca. Jettenia caeni and Ca. Brocadia sinica in response to acetate, Water Res., 2019a, vol. 165, art. 114974.

    Article  CAS  PubMed  Google Scholar 

  12. Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., and Hartmann, M., Microbial diversity in European alpine permafrost and active layers, FEMS Microbiol. Ecol., 2016, vol. 92. fiw018.

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez-Gil, G., Sougrat, R., Behzad, A.R., Lens, P.N., and Saikaly, P.E., Microbial community composition and ultrastructure of granules from a full-scale anammox reactor, Microb. Ecol., 2015, vol. 70, pp. 118‒131.

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Martinez, A., Osorio, F., Rodriguez-Sanchez, A., Martinez-Toledo, M.V., Gonzalez-Lopez, J., Lotti, T., and van Loosdrecht, M.C.M., Bacterial community structure of a lab-scale anammox membrane bioreactor, Biotechnol. Prog., 2015, vol. 31, pp. 186‒193.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, Y., Liu, S., Tang, X., and Yang, F., Role of c-di-GMP in anammox aggregation and systematic analysis of its turnover protein in Candidatus Jettenia caeni, Water Res., 2017, vol. 113, pp. 181‒190.

    Article  CAS  PubMed  Google Scholar 

  16. Hou, X., Liu, S., and Zhang, Z., Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge, Water Res., 2015, vol. 75, pp. 51‒62.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, X.-L., Gao, D.-W., Tao, Y., and Wang, X.-L., C2/C3 fatty acid stress on anammox consortia dominated by Candidatus Jettenia asiatica, Chem. Eng. J., 2014, vol. 253, pp. 402–407.

    Article  CAS  Google Scholar 

  18. Jenni, S., Vlaeminck, S.E., Morgenroth, E., and Udert, K.M., Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios, Water Res., 2014, vol. 49, pp. 316‒326.

    Article  CAS  PubMed  Google Scholar 

  19. Kallistova, A.Yu., Pimenov, N.V., Kozlov, M.N., Nikolaev, Yu.A., Dorofeev, A.G., Aseeva, V.G., Grachev, V.A., Men’ko, E.V., Berestovskaya, Yu.Yu., Nozhevnikova, A.N., and Kevbrina, M.V., Microbial composition of the activated sludge of Moscow wastewater treatment plants, Microbiology (Moscow), 2014, vol. 83, pp. 699–708.

    Article  CAS  Google Scholar 

  20. Kartal, B., Kuenen, J.G., and van Loosdrecht, M.C., Sewage treatment with anammox, Science, 2010, vol. 328, pp. 702‒703.

    Article  CAS  PubMed  Google Scholar 

  21. Kartal, B., Kuypers, M.M., Lavik, G., Schalk, J., Op den Camp, H.J.M., Jetten, M.S.M., and Strous, M., Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium, Environ. Microbiol., 2007, vol. 9, pp. 635‒642.

    Article  CAS  PubMed  Google Scholar 

  22. Kartal, B., van Niftrik, L., Rattray, J., van de Vossenberg, J.L., Schmid, M.C., Sinninghe Damsté, J., Jetten, M.S., and Strous, M., Candidatus “Brocadia fulgida”: an autofluorescent anaerobic ammonium oxidizing bacterium, FEMS Microbiol. Ecol., 2008, vol. 63, pp. 46–55.

    Article  CAS  PubMed  Google Scholar 

  23. Kindaichi, T., Tsushima, I., Ogasawara, Y., Shimokawa, M., Ozaki, N., Satoh, H., and Okabe, S., In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms, Appl. Environ. Microbiol., 2007, vol. 73, pp. 4931‒4939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuenen, J.G., Anammox and beyond, Environ. Microbiol., 2020, vol. 22, pp. 525‒536.

    Article  PubMed  Google Scholar 

  25. Lawson, C.E., Wu, S., Bhattacharjee, A.S., Hamilton, J.J., McMahon, K.D., Goel, R., and Noguera, D.R., Metabolic network analysis reveals microbial community interactions in anammox granules, Nat. Commun., 2017, vol. 8, art. 15416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang, Y., Li, D., Zhang, X., Zeng, H., Yang, Y., and Zhang, J., Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors, Bioresour. Technol., 2015, vol. 193, pp. 408–414.

    Article  CAS  PubMed  Google Scholar 

  27. Li, J., Li, J., Peng, Y., Wang, S., Zhang, L., Yang, S., and Li, S., Insight into the impacts of organics on anammox and their potential linking to system performance of sewage partial nitrification-anammox (PN/A): a critical review, Bioresour. Technol., 2020, vol. 300, art. 122655.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, X. and Wang, Y., Microstructure of anammox granules and mechanisms endowing their intensity revealed by microscopic inspection and rheometry, Water Res., 2017, vol. 120, pp. 22‒31.

    Article  CAS  PubMed  Google Scholar 

  29. Mardanov, A.V., Beletskii, A.V., Kallistova, A.Yu., Kotlyarov, R.Yu., Nikolaev, Yu.A., Kevbrina, M.V., Agarev, A.M., Ravin, N.V., and Pimenov, N.V., Dynamics of the composition of a microbial consortium during start-up of a single-stage constant flow laboratory nitritation/anammox setup, Microbiology (Moscow), 2016, vol. 85, pp. 681‒692.

    Article  CAS  Google Scholar 

  30. Mardanov, A.V., Beletsky, A.V., Nikolaev, Yu., Kotlyarov, R.Y., Kallistova, A., Pimenov, N.V., and Ravin, N.V., Metagenome of the microbial community of anammox granules in a nitritation/anammox wastewater treatment system, Genome Announc., 2017, vol. 5, art. e01115-17.

    PubMed  PubMed Central  Google Scholar 

  31. Mardanov, A.V., Kotlyarov, R.V., Beletsky, A.V., Nikolaev, Y.A., Kallistova, A.Y., Grachev, V.A., Berestovskaya, Y.Y., Pimenov, N.V., and Ravin, N.V., Metagenomic data of the microbial community of lab-scale nitritation-anammox sequencing-batch bioreactor performing nitrogen removal from synthetic wastewater, Data in Brief, 2019, vol. 27, art. 104722.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ni, B.-J., Hu, B.-L., Fang, F., Xie, W.-M., Kartal, B., Liu, X.-W., Sheng, G.-P., Jetten, M., Zheng, P., and Yu, H.-Q., Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor, Appl. Environ. Microbiol., 2010, vol. 76, pp. 2652‒2656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nikolaev, Yu., Kallistova, A., Kevbrina, M., Dorofeev, A., Agarev, A., Mardanov, A., Ravin, N., Kozlov, M., and Pimenov, N., Novel design and optimization of a nitritation/anammox setup for ammonium removal from filtrate of digested sludge, Environ. Technol., 2018, vol. 39, pp. 593–606.

    Article  CAS  PubMed  Google Scholar 

  34. Peeters, S.H. and van Niftrik, L., Trending topics and open questions in anaerobic ammonium oxidation, Curr. Opin. Chem. Biol., 2019, vol. 49, pp. 45‒52.

    Article  CAS  PubMed  Google Scholar 

  35. Schmid, M.C., Maas, B., Dapena, A., van de Pas-Schoonen, K., van de Vossenberg, J., Kartal, B., van Niftrik, L., Schmidt, I., Cirpus, I., Kuenen, J.G., Wagner, M., Sinninghe Damsté, J.S., Kuypers, M., Revsbech, N.P., Mendez, R., Jetten, M.S.M., and Strous, M., Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria, Appl. Environ. Microbiol., 2005, vol. 71, pp. 1677‒1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmid, M., Walsh, K., Webb, R., Rijpstra, W.I., van de Pas-Schoonen, K., Verbruggen, M.J., Hill, T., Moffett, B., Fuerst, J., Schouten, S., Damsté, J.S., Harris, J., Shaw, P., Jetten, M., and Strous, M., Candidatus “Scalindua brodae,” sp. nov., Candidatus “Scalindua wagneri,” sp. nov., two new species of anaerobic ammonium oxidizing bacteria, Syst. Appl. Microbiol., 2003, vol. 26, pp. 529–538.

    Article  CAS  PubMed  Google Scholar 

  37. Shu, D.T., He, Y.L., Yue, H., Gao, J.L., Wang, Q.Y., and Yang, S.C., Enhanced long-term nitrogen removal by organotrophic anammox bacteria under different C/N ratio constraints: quantitative molecular mechanism and microbial community dynamics, RSC Adv., 2016, vol. 6, pp. 87593‒87606.

    Article  CAS  Google Scholar 

  38. Sonthiphand, P. and Neufeld, J.D., Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments, PLoS One, 2013, vol. 8, art. e57242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Standard Methods for the Examination of Water and Wastewater, 22nd ed., Rice, E.W. and Bridgewater, L., Eds., Washington, D.C.: American Public Health Association, 2012.

    Google Scholar 

  40. Strous, M., Heijnen, J.J., Kuenen, J.G., and Jetten, M.S.M., The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Appl. Microbiol. Biotechnol., 1998, vol. 50, pp. 589–596.

    Article  CAS  Google Scholar 

  41. van Niftrik, L. and Jetten, M.S.M., Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties, Microbiol. Mol. Biol. Rev., 2012, vol. 76, pp. 585–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Niftrik, L., Geerts, W.J.C., van Donselaar, E.G., Humbel, B.M., Webb, R.I., Fuerst, J.A., Verkleij, A.J, Jetten, M.S.M., and Strous, M., Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage and localization of cytochrome c proteins, J. Bacteriol., 2008, vol. 190, pp. 708–717.

    Article  CAS  PubMed  Google Scholar 

  43. van Teeseling, M.C.F., Mesman, R.J., Kuru, E., Espaillat, A., Cava, F., Brun, Y.V., VanNieuwenhze, M.S., Kartal, B., and van Niftrik, L., Anammox Planctomycetes have a peptidoglycan cell wall, Nat. Commun., 2015, vol. 6, art. 6878.

    Article  CAS  PubMed  Google Scholar 

  44. Vlaeminck, S.E., Terada, A., Smets, B.F., De Clippeleir, H., Schaubroeck, T., Bolca, S., Demeestere, L., Mast, J., Boon, N., Carballa, M., and Verstraete, W., Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox, Appl. Environ. Microbiol., 2010, vol. 76, pp. 900–909.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, J.P., Liu, Y.D., Meng, F.G., and Li, W., The short- and long-term effects of formic acid on rapid nitritation start-up, Environ. Int., 2020b, vol. 135, art. 105350.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, W., Yan, Y., Zhao, Y., Shi, Q., and Wang, Y., Characterization of stratified EPS and their role in the initial adhesion of anammox consortia, Water. Res., 2020a, vol. 169, art. 115223.

    Article  CAS  PubMed  Google Scholar 

  47. Yin, X., Zhai, J., Hu, W., Li, Y., Rahaman, M.H., and Mąkinia, J., A fast start-up of the organotrophic anammox process inoculated with constructed wetland sediment, Ecol. Engin., 2019, vol. 138, pp. 454‒460.

    Article  Google Scholar 

  48. Zhao, Y., Liu, S., Jiang, B., Feng, Y., Zhu, T., Tao, H., Tang, X., and Liu, S., Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia, Environ. Sci. Technol., 2018, vol. 52, pp. 11285‒11296.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-29-08008 mk) and by the Russian Federation Ministry of Science and Higher Education (State Assignment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kallistova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHORS CONTRIBUTION

AYK, YAN, AVM, NVR, and NVP conceived and designed the experiments and analyzed the results. VAG carried out reactor assembly and startup, maintained the reactor, and analyzed the physicochemical parameters. YYB and AVP carried out light microscopy. NAK performed electron microscopy. AYK conducted epifluorescence microscopy and wrote the paper. AVM and NVR performed molecular genetic analysis. NVP carried out general management. All authors discussed the results and commented on the manuscript.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallistova, A.Y., Nikolaev, Y.A., Mardanov, A.V. et al. Investigation of Formation and Development of Anammox Biofilms by Light, Epifluorescence, and Electron Microscopy. Microbiology 89, 708–719 (2020). https://doi.org/10.1134/S0026261720060077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720060077

Keywords:

Navigation