Skip to main content
Log in

Enhancing Hydrophobicity of Polymer Thin Film-Coated Surface by Wrinkling Method

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The hydrophobicity of film surfaces can be enhanced by introducing wrinkling and buckling, and the wrinkling method in this study is a facile way to induce various microstructures including wrinkles and buckles in film surfaces. When buckles formed, the water contact angle parallel to the wrinkled direction (θ//) changed dramatically with strain, but the contact angle perpendicular to the wrinkled direction did not change much. It was found that the buckle structural feature was the key characteristics affecting the change in contact angle, θ//. A dimensionless number, the ratio of buckle height to spacing (Hb/Sb) was introduced to determine the relationship between the structural feature and the contact angle, θ//. The contact angle, θ// strongly depended on Hb/Sb. The thickest film (hf = 605 nm) at the highest strain (ɛ = 30%) and the highest Hb/Sb formed many large buckles, and exhibited super-hydrophobicity (θ// = 169 ± 10°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Öner and T. J. McCarthy, Langmuir, 16, 7777 (2000).

    Article  CAS  Google Scholar 

  2. J. Bico, C. Marzolin, and D. Quéré, EPL (Europhysics Letters), 47, 220 (1999).

    Article  CAS  Google Scholar 

  3. H. Vahabi, W. Wang, S. Movafaghi, and A.K. Kota, ACS Appl. Mater. Interfaces, 8, 21962 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. A. Sabbah, A. Youssef, and P. Damman, Appl. Sci., 6, 152 (2016).

    Article  CAS  Google Scholar 

  5. K. Golovin, D. H. Lee, J. M. Mabry, and A. Tuteja, Angewandte Chemie International Edition, 52, 13007 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. S.-J. Choi and S.-Y. Huh, Macromol. Rapid Commun., 31, 539 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. K. Efimenko, J. Finlay, M.E. Callow, J.A. Callow, and J. Genzer, ACS Appl. Mater. Interfaces, 1, 1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. W. Wang, K. Lockwood, L. M. Boyd, M. D. Davidson, S. Movafaghi, H. Vahabi, S. R. Khetani, and A. K. Kota, ACS Appl. Mater. Interfaces, 8, 18664 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. J. Genzer and K. Efimenko, Biofouling, 22, 339 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. S. Baldofski, C. J. Canitz, L.-A. Garbe, and R. J. Schneider, Anal. Biochem., 543, 90 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. J.-D. Brassard, D. K. Sarkar, and J. Perron, Appl. Sci., 2, 453 (2012).

    Article  CAS  Google Scholar 

  12. D. Kwon, D. M. Kim, S. M. Choi, H. S. Suh, Y. Y. Kim, H. Yoon, and K. Char, Macromol. Res., 26, 374 (2018).

    Article  CAS  Google Scholar 

  13. A. G. Al Lafi, R. Hasan, and N. Al-Kafri, Macromol. Res., 27, 1239 (2019).

    Article  CAS  Google Scholar 

  14. R. W. Nunes, J. R. Martin, and J. F. Johnson, Polym. Eng. Sci., 22, 205 (1982).

    Article  CAS  Google Scholar 

  15. R. Sothornvit and J. M. Krochta, J. Food Eng., 50, 149 (2001).

    Article  Google Scholar 

  16. W. Barthlott and C. Neinhuis, Planta, 202, 1 (1997).

    Article  CAS  Google Scholar 

  17. G. McHale, M. I. Newton, and N. J. Shirtcliffe, Soft Matter, 6, 714 (2010).

    Article  CAS  Google Scholar 

  18. H. Awada, B. Grignard, C. Jérôme, A. Vaillant, J. De Coninck, B. Nysten, and A. M. Jonas, Langmuir, 26, 17798 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. S. Shin, J. Seo, H. Han, S. Kang, H. Kim, and T. Lee, Materials, 9, 116 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  20. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, Appl. Phys. Lett., 75, 2557 (1999).

    Article  CAS  Google Scholar 

  21. S. M. Kang, C. Lee, H. N. Kim, B. J. Lee, J. E. Lee, M. K. Kwak, and K.-Y. Suh, Adv. Mater., 25, 5756 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. D. Xia and S. R. J. Brueck, Nano Lett., 8, 2819 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. F. Zhang and H. Y. Low, Langmuir, 23, 7793 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. D. Xia, X. He, Y.-B. Jiang, G. P. Lopez, and S. R. J. Brueck, Langmuir, 26, 2700 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. H. Wu, R. Zhang, Y. Sun, D. Lin, Z. Sun, W. Pan, and P. Downs, Soft Matter, 4, 2429 (2008).

    Article  CAS  Google Scholar 

  26. E. Cerda, K. Ravi-Chandar, and L. Mahadevan, Nature, 419, 579 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, and P. Damman, Nat. Phys., 7, 56 (2010).

    Article  CAS  Google Scholar 

  28. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, Nat. Mater., 4, 293 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. Van- Landingham, H.-C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, Nat. Mater., 3, 545 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. H. Vandeparre and P. Damman, Phys. Rev. Lett., 101, 124301 (2008).

    Article  PubMed  CAS  Google Scholar 

  31. B. Kolaric, H. Vandeparre, S. Desprez, R.A.L. Vallée, and P. Damman, Appl. Phys. Lett., 96, 043119 (2010).

    Article  CAS  Google Scholar 

  32. D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, Science, 311, 208 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. P. J. Yoo, K. Y. Suh, H. Kang, and H. H. Lee, Phys. Rev. Lett., 93, 034301 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. H. Mei, R. Huang, J. Y. Chung, C. M. Stafford, and H.-H. Yu, Appl. Phys. Lett., 90, 151902 (2007).

    Article  CAS  Google Scholar 

  35. H. S. Kim and A. J. Crosby, Adv. Mater., 23, 4188 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. J. Y. Chung, A. J. Nolte, and C. M. Stafford, Adv. Mater., 23, 349 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. C. Cao, H. F. Chan, J. Zang, K. W. Leong, and X. Zhao, Adv. Mater., 26, 1763 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. G. Lin, Q. Zhang, C. Lv, Y. Tang, and J. Yin, Soft Matter, 14, 1517 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Q. Wang and X. Zhao, MRS Bulletin, 41, 115 (2016).

    Article  CAS  Google Scholar 

  40. Q. Wang and X. Zhao, Sci. Rep., 5, 8887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936).

    Article  CAS  Google Scholar 

  42. A. B. D. Cassie and S. Baxter, Trans. Faraday Society, 40, 546 (1944).

    Article  CAS  Google Scholar 

  43. K. Jun, D. Kim, S. Ryu, and I.-K. Oh, Sci. Rep., 7, 6091 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. J. Y. Chung, J. P. Youngblood, and C. M. Stafford, Soft Matter, 3, 1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. G. Lin, P. Chandrasekaran, C. Lv, Q. Zhang, Y. Tang, L. Han, and J. Yin, ACS Appl. Mater. Interfaces, 9, 26510 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. H. Zhang, R. Lamb, and J. Lewis, Sci. Technol. Adv. Mater., 6, 236 (2005).

    Article  CAS  Google Scholar 

  47. N. Zhao, Q. Xie, X. Kuang, S. Wang, Y. Li, X. Lu, S. Tan, J. Shen, X. Zhang, Y. Zhang, J. Xu, and C. C. Han, Adv. Funct. Mater., 17, 2739 (2007).

    Article  CAS  Google Scholar 

  48. C. M. Stafford, S. Guo, C. Harrison, and M. Y. M. Chiang, Rev. Sci. Instrum., 76, 062207 (2005).

    Article  CAS  Google Scholar 

  49. T. Y. Tsui and G. M. Pharr, J. Mater. Res., 14, 292 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Jin Choi.

Additional information

Acknowledgments: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region (R0004136) and was also supported by the Core Research Project at Korea Research Institute of Chemical Technology (KRICT) (KK-1806-C00) funded by the Ministry of Science and ICT, Korea.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byeon, M., Cho, S.K., Um, M.S. et al. Enhancing Hydrophobicity of Polymer Thin Film-Coated Surface by Wrinkling Method. Macromol. Res. 28, 1104–1110 (2020). https://doi.org/10.1007/s13233-020-8158-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8158-1

Keywords

Navigation