Skip to main content
Log in

Laser cooling with adiabatic passage for type-II transitions

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We extend the idea of laser cooling with adiabatic passage to multi-level type-II transitions. We find the cooling force can be significantly enhanced when a proper magnetic field is applied. That is because the magnetic field decomposes the multi-level system into several two-level sub-systems, hence the stimulated absorption and stimulated emission can occur in order, allowing for the multiple photon momentum transfer. We show that this scheme also works on the laser-coolable molecules with a better cooling effect compared to the conventional Doppler cooling. A reduced dependence on spontaneous emission based on our scheme is observed as well. Our results suggest this scheme is very feasible for laser cooling of polar molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chu, The manipulation of neutral particles, Rev. Mod. Phys. 70(3), 685 (1998)

    Article  ADS  Google Scholar 

  2. W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)

    Article  ADS  Google Scholar 

  3. C. N. Cohen-Tannoudji, Manipulating atoms with photons, Rev. Mod. Phys. 70(3), 707 (1998)

    Article  ADS  Google Scholar 

  4. E. A. Cornell and C. E. Wieman, Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)

    Article  ADS  Google Scholar 

  5. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)

    Article  ADS  Google Scholar 

  6. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)

    Article  ADS  Google Scholar 

  7. J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. S. Safronova, D. Budker, D. DeMille, D F J. Kimball, A. Derevianko, and C. W. Clark, Search for new physics with atoms and molecules, Rev. Mod. Phys. 90(2), 025008 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Metcalf, Strong optical forces on atoms in multifre-quency light, Rev. Mod. Phys. 89(4), 041001 (2017)

    Article  ADS  Google Scholar 

  10. T. Lu, X. Miao, and H. Metcalf, Bloch theorem on the Bloch sphere, Phys. Rev. A 71(6), 061405 (2005)

    Article  ADS  Google Scholar 

  11. X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, Strong optical forces from adiabatic rapid passage, Phys. Rev. A 75(1), 011402 (2007)

    Article  ADS  Google Scholar 

  12. A. M. Jayich, A. C. Vutha, M. T. Hummon, J. V. Porto, and W. C. Campbell, Continuous all-optical deceleration and single-photon cooling of molecular beams, Phys. Rev. A 89(2), 023425 (2014)

    Article  ADS  Google Scholar 

  13. J. Söding, R. Grimm, Yu. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, Short-distance atomic beam deceleration with a stimulated light force, Phys. Rev. Lett. 78(8), 1420 (1997)

    Article  ADS  Google Scholar 

  14. L. Yatsenko and H. Metcalf, Dressed-atom description of the bichromatic force, Phys. Rev. A 70(6), 063402 (2004)

    Article  ADS  Google Scholar 

  15. M. Partlow, X. Miao, J. Bochmann, M. Cashen, and H. Metcalf, Bichromatic slowing and collimation to make an intense helium beam, Phys. Rev. Lett. 93(21), 213004 (2004)

    Article  ADS  Google Scholar 

  16. C. Corder, B. Arnold, and H. Metcalf, Laser cooling without spontaneous emission, Phys. Rev. Lett. 114(4), 043002 (2015)

    Article  ADS  Google Scholar 

  17. E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)

    Article  ADS  Google Scholar 

  18. M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)

    Article  ADS  Google Scholar 

  19. M. D. Di Rosa, Laser-cooling molecules, Europ. Phys. J. D 31, 395 (2004)

    Article  ADS  Google Scholar 

  20. T. Chen, W. Bu, and B. Yan, Structure, branching ratios, and a laser-cooling scheme for the 138BaF molecule, Phys. Rev. A 94(6), 063415 (2016)

    Article  ADS  Google Scholar 

  21. B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magneto-optical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)

    Article  ADS  Google Scholar 

  22. T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)

    Article  ADS  Google Scholar 

  23. I. Kozyryev, L. Baum, L. Aldridge, P. Yu, E. E. Eyler, and J. M. Doyle, Coherent bichromatic force deflection of molecules, Phys. Rev. Lett. 120(6), 063205 (2018)

    Article  ADS  Google Scholar 

  24. H. Metcalf and P. V. der Straten, Laser Cooling and Trapping, Springer, 1999

  25. J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models, J. Opt. Soc. Am. B 6(11), 2023 (1989)

    Article  ADS  Google Scholar 

  26. P. Ungar, D. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel atoms: Theory, J. Opt. Soc. Am. B 6(11), 2058 (1989)

    Article  ADS  Google Scholar 

  27. S. A. Malinovskaya and G. Liu, Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation, Chem. Phys. Lett. 664, 1 (2016)

    Article  ADS  Google Scholar 

  28. M. A. Norcia, J. R. K. Cline, J. P. Bartolotta, M. J. Holland, and J. K. Thompson, Narrow-line laser cooling by adiabatic transfer, New J. Phys. 20(2), 023021 (2018)

    Article  ADS  Google Scholar 

  29. J. A. Muniz, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, A robust narrow-line magneto-optical trap using adiabatic transfer, arXiv: 1806.00838 (2018)

  30. N. Petersen, F. Mühlbauer, L. Bougas, A. Sharma, D. Budker, and P. Windpassinger, Sawtooth-wave adiabatic-passage slowing of dysprosium, Phys. Rev. A 99(6), 063414 (2019)

    Article  ADS  Google Scholar 

  31. J. P. Bartolotta and M. J. Holland, Sawtooth-wave adiabatic passage in a magneto-optical trap, Phys. Rev. A 101(5), 053434 (2020)

    Article  ADS  Google Scholar 

  32. G. P. Greve, B. Wu, and J. K. Thompson, Laser cooling with adiabatic transfer on a Raman transition, New J. Phys. 21(7), 073045 (2019)

    Article  ADS  Google Scholar 

  33. J. P. Bartolotta, M. A. Norcia, J. R. K. Cline, J. K. Thompson, and M. J. Holland, Laser cooling by sawtooth-wave adiabatic passage, Phys. Rev. A 98(2), 023404 (2018)

    Article  ADS  Google Scholar 

  34. A. M. L. Oien, I. T. McKinnie, P. J. Manson, W. J. Sandle, and D. M. Warrington, Cooling mechanisms in the sodium type-II magneto-optical trap, Phys. Rev. A 55(6), 4621 (1997)

    Article  ADS  Google Scholar 

  35. V. B. Tiwari, S. Singh, H. S. Rawat, and S. C. Mehendale, Cooling and trapping of 85 Rb atoms in the ground hyperfine F =2 state, Phys. Rev. A 78(6), 063421 (2008)

    Article  ADS  Google Scholar 

  36. L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)

    Article  ADS  Google Scholar 

  37. S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)

    Article  Google Scholar 

  38. M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)

    Article  ADS  Google Scholar 

  39. K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wave-function method in quantum optics, J. Opt. Soc. Am. B 10(3), 524 (1993)

    Article  ADS  Google Scholar 

  40. A. L. Collopy, M. T. Hummon, M. Yeo, B. Yan, and J. Ye, Prospects for a narrow line MOT in YO, New J. Phys. 17(5), 055008 (2015)

    Article  ADS  Google Scholar 

  41. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping, Phys. Rev. Lett. 61(7), 826 (1988)

    Article  ADS  Google Scholar 

  42. M. Kasevich and S. Chu, Laser cooling below a photon recoil with three-level atoms, Phys. Rev. Lett. 69(12), 1741 (1992)

    Article  ADS  Google Scholar 

  43. J. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge University Press, 2003

Download references

Acknowledgements

We acknowledge the support from the Natural Science Foundation of Zhejiang Province under Grant No. LZ18A040001, the National Key R&D Program of China under Grant No. 2018YFA0307200, the National Natural Science Foundation of China under Grant No. 12074337, Zhejiang Province Plan for Science and Technology No. 2020C01019, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Chen or Bo Yan.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1019-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Chen, T., Bu, WH. et al. Laser cooling with adiabatic passage for type-II transitions. Front. Phys. 16, 32501 (2021). https://doi.org/10.1007/s11467-020-1019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1019-8

Keywords

Navigation