Skip to main content
Log in

Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers

  • Published:
Materials Science Aims and scope

By using the modular-deformation method of calculations, we established the influence of finely divided filler (talc) and additional heat treatment on the elastoplastic properties of polylactide materials. We detected the changes in the modulus of deformation, elasticity modulus, and thermomechanical characteristics of polylactide composites. The maximum values of the moduli and melting point were observed for thermally treated specimens with a talc content of 2 wt.%. We determined the fractions of the elastic, plastic, and highly elastic components in the total deformation of polylactide materials and showed that the fraction of the plastic component decreases after thermal treatment and as a result of introduction of the filler. It was also discovered that the level of hardness and structure factor of the obtained materials noticeably increase as a result of the introduction of talc and additional thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Y.-W. Mai and Z.-Z. Yu (editors), Polymer Nanocomposites, CRC Press, Boca Raton (2006).

    Google Scholar 

  2. V. K. Thakur, M. K. Thakur, and A. Pappu (editors), Hybrid Polymer Composite Materials, Woodhead Publ., Cambridge (2017).

    Google Scholar 

  3. M. Niaounakis, Biopolymers: Applications and Trends, William Andrew, Oxford (2015).

    Google Scholar 

  4. Y. Tokiwa and B. P. Calabia, “Biodegradability and biodegradation of poly(lactide),” Appl. Microbiol. Biotechnol., 72, 244–251 (2006).

    Article  CAS  Google Scholar 

  5. L. T. Sin and S. T. Bee, Polylactic Acid: A Practical Guide for the Processing, Manufacturing, and Applications of PLA, William Andrew, Oxford (2019).

    Google Scholar 

  6. M. L. Di Lorenzo and R. Androsch (editors), Industrial Applications of Poly(lactic acid), Springer, Cham (2018).

  7. M. Murariu and P. Dubois, “PLA composites: From production to properties,” Adv. Drug Deliv. Rev., 107, 17–46 (2016).

    Article  CAS  Google Scholar 

  8. F. Carrasco, P. Pagès, J. Gámez-Pérez, O. O. Santana, and M. L. Maspoch, “Processing of poly(lactic acid): Characterization of chemical structure, thermal stability, and mechanical properties,” Polymer. Degrad. Stabil., 95, 116–125 (2010).

    Article  CAS  Google Scholar 

  9. V. Levyts’kyi, А. Masyuk, Т. Bialopiotrowicz, L. Bilyi, and T. Humenets’kyi, “Morphology and properties of thermoplastic composites with modified silicate fillers,” Fiz.-Khim. Mekh. Mater., 54, No. 1, 53–58 (2018); English translation: Mater. Sci., 54, No. 1, 48–54 (2018).

  10. V. Levytskyj, Y. Laruk, T. Humenetsky, and J. Sikora, “The influence of polystyrene modifier and plasticizer nature on the properties of poly(vinyl chloride),” Chem. Chem. Technol., 9, No. 2, 199–203 (2015).

    Article  CAS  Google Scholar 

  11. É. Kh. Liiv and A. D. Mashegirov, Procedure of Determination of the Physicomechanical Properties of Polymeric Composites by Indentation with a Conic Indenter [in Russian], Vol. 27, ÉstNIINTI, Tallinn (1983).

  12. V. E. Levyts’kyi, А. S. Masyuk, D. S. Samoilyuk, L. М. Bilyi, and Т. V. Humenets’kyi, “Morphology and properties of polymer–silicate composites,” Fiz.-Khim. Mekh. Mater., 52, No. 1, 21–27 (2016); English translation: Mater. Sci., 52, No. 1, 17–24 (2016).

  13. L. M. Lebedev, Machines and Instruments for Testing Polymers [in Russian], Mashinostroenie, Moscow (1967).

    Google Scholar 

  14. A. Jiménez, M. Peltzer, and R. Ruseckaite (editors), Poly(lactic acid) Science and Technology: Processing, Properties, Additives, and Applications, Royal Society of Chemistry, Cambridge (2014).

  15. V. Levytsky, V. Kochubei, and A. Gancho, “Influence of the silicate modifier nature on the structure and properties of polycaproamide,” Chem. Chem. Technol., 7, No. 2, 169–173 (2013).

    Article  Google Scholar 

  16. V. E. Levyts’kyi, D. S. Katruk, A. M. Shybanova, L. M. Bilyi, and T. V. Humenets’kyi, “Physicochemical properties of modified polyester-polyvinylchloride compositions,” Fiz.-Khim. Mekh. Mater., 52, No. 4, 100–105 (2016); English translation: Mater. Sci., 52, No. 4, 559–565 (2016).

  17. K. Hamada, M. Kaseemb, M. Ayyoobd, J. Jooa, and F. Deric, “Polylactic acid blends: The future of green, light, and tough,” Progr. Polymer. Sci., 85, 83–127 (2018).

    Article  Google Scholar 

  18. V. Levytskyi, A. Masyuk, and O. Suberlyak, “Preparation and properties of polymer-silicate composites based on hydrophilic polymers,” Vopr. Khim. Khim. Tekhnol., No. 6, 68–74 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Bilyi.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 56, No. 3, pp. 31–38, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masyuk, А.S., Kysil, K.V., Katruk, D.S. et al. Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers. Mater Sci 56, 319–326 (2020). https://doi.org/10.1007/s11003-020-00432-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-020-00432-y

Keywords

Navigation