Skip to main content
Log in

New Zr3MNx (M = Co, Ni) Subnitrides: Theoretical Analyses, Crystal Structure, and Hydrogen-Sorption Properties

  • Published:
Materials Science Aims and scope

The free energy and density of states are computed by the DFT method for the Zr3NiO and Zr3NiN compounds. Their formation was confirmed and numerous Zr3MNx (M = Co, Ni) compounds were synthesized for the first time. It is shown that all these compounds are insertion derivatives of the Re3B structural type (space group Cmcm). We study the process of gas-phase hydrogenation of the obtained subnitrides. It is shown that some specimens form single-phase hydrides (Zr3NiN0.5H5.64 and Zr3CoNH5.62) preserving the crystal structure of the original matrix with an increase in the volume of elementary cell by ∼ 16%. The process of hydrogen desorption in a vacuum was studied by the TDS method for various Zr3CoN(O)x hydrides. We compare the desorption properties of hydrides depending on the type of stabilizing element and the hydrogen content of hydride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Rupp, “On the change in physical properties of Ti4–xFe2+xOy during hydrogenation I: Activation behavior of ternary oxides Ti4–x Fe2+xOy and β-Ti,” J. Less-Common Met., 104, 51–63 (1984).

    Article  CAS  Google Scholar 

  2. M. H. Mintz, Z. Hadari, and M. P. Dariel, “Hydrogenation characteristics of Ti2NiOx compounds (0 ≤ x < 0.5),” J. Less-Common Met., 63, 181–191 (1979)

    Article  CAS  Google Scholar 

  3. H. Boller, “Über den aufgefüllten Re3B-Typ in den Systemen (Zr, Hf)–(Fe, Co, Ni)–O,” Monatsh. Chem., 104, 545–549 (1973).

    Article  CAS  Google Scholar 

  4. P. Rogl, H. Nowotny, and F. Benesowsky, “Neue K-Boride und verwandte Phasen (Re3B-Typ, aufgefüllt),” Monatsh. Chem., 104, 182–193 (1973).

    Article  CAS  Google Scholar 

  5. I. Zavaliy, A. Riabov, V. Yartys, G. Wiesinger, H. Michor, and G. Hilscher, “(Hf, Zr)2 Fe and Zr4Fe2O0.6 compounds and their hydrides: phase equilibria, crystal structure, and magnetic properties,” J. Alloys Comp., 265, 6–14 (1998).

    Article  CAS  Google Scholar 

  6. I. Yu. Zavaliy, R. V. Denys, I. V. Koval’chuck, A. В. Riabov, and R. G. Delaplane, “Hydrogenation of Ti4–xZrxFe2Oy alloys and crystal structure analysis of their deuterides,” Chem. Met. Alloys, 2, 59–67 (2009).

    Article  Google Scholar 

  7. I. Zavaliy, “Effect of oxygen content on hydrogen storage capacity of Zr-based η-phases,” J. Alloys Comp., 291, 102–109 (1999).

  8. I. Yu. Zavaliy, W. B. Yelon, P. Yu. Zavalij, I. V. Saldan, and V. K. Pecharsky, “The crystal structure of the oxygen-stabilized η-phase Zr3V3OxD9.6,” J. Alloys Comp., 309, 75–82 (2000).

    Article  CAS  Google Scholar 

  9. I. Y. Zavalii, R. Cerny, I. V. Koval’chuck, and I. V. Saldan, “Hydrogenation of oxygen-stabilized Zr3NiOx compounds,” J. Alloys Comp., 360, 173–182 (2003).

    Article  Google Scholar 

  10. I. Yu. Zavaliy, R. V. Denys, R. Cerný, I. V. Koval’chuck, G. Wiesinger, and G. Hilscher, “Hydrogen-induced changes in crystal structure and magnetic properties of the Zr3MOx (M = Fe, Co) phases,” J. Alloys Comp., 386, 26–34 (2005).

    Article  CAS  Google Scholar 

  11. I. V. Koval’chuck, R. Cerny, R. V. Denys, and I. Yu. Zavaliy, “Crystal structure of k-Hf9Mo4SiD16.8 deuteride,” Chem. Met. Alloys, 1, 180–184 (2008).

    Article  Google Scholar 

  12. I. Zavaliy, G. Wojcik, G. Mlynarek, I. Saldan, V. Yartys, and M. Kopczyk, “Phase-structural characteristics of (Ti1−xZrx)4Ni2O0.3 alloys and their hydrogen gas and electrochemical absorption-desorption properties,” J. Alloys Comp., 314, 124–131 (2001).

    Article  CAS  Google Scholar 

  13. I. V. Saldan, Yu. H. Dubov, O. B. Ryabov, and I. Yu. Zavaliy, “Effect of the modification of metal-hydride electrodes based on Ti2Ni alloys on their discharge characteristics,” Fiz.-Khim. Mekh. Mater., 42, No. 5, 56–64 (2006); English translation: Mater. Sci., 42, No. 5, 634–643 (2006).

  14. I. Yu. Zavalii, Yu. V. Verbovyts’kyi, V. V. Berezovets’, V. V. Shtender, V. K. Pecharsky, and P. Ya. Lyutyi, “Synthesis, structure, and hydrogen-sorption properties of (Ti, Zr)4Ni2Nx subnitrides,” Fiz.-Khim. Mekh. Mater., 53, No. 3, 18–25 (2017); English translation: Mater. Sci., 53, No. 3, 306–315 (2017).

  15. L. G. Akselrud, Yu. M. Grin, P. Yu. Zavalij, and V. K. Pecharsky, “Use of the CSD program package for structure determination,” in: Proc. 2nd Europ. Powder Diffraction Conf., Enschede, Netherlands, R. Delhez and E. J. Mittemijer (editors) (1993), p. 41.

  16. R. Sundararaman, K. Letchworth-Weaver, K. A. Schwarz, D. Gunceler, Y. Ozhabes, and T. A. Arias, “JDFTx: Software for joint density-functional theory,” SoftwareX, 6, 278–284 (2017).

    Article  Google Scholar 

  17. C. Freysoldt, S. Boeck, and J. Neugebauer, “Direct minimization technique for metals in density functional theory,” Phys. Rev. B, 79, I. 241103(R) (2009).

  18. M. Schlipf and F. Gygi, “Optimization algorithm for the generation of ONCV pseudopotentials,” Comput. Phys. Comm., 196, 36–44 (2015).

    Article  CAS  Google Scholar 

  19. J. P. Perdew, K. Burkeand, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  20. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B, 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  21. J. W. Bennett, B. G. Hudson, I. K. Metz, D. Liang, S. Spurgeon, Q. Cui, and S. E. Mason, “A systematic determination of Hubbard U using the GBRV ultrasoft pseudopotential set,” Comput. Mater. Sci., 170, I. 109137 (2019).

  22. A. Chikdene, A. Baudry, J. L. Soubeyroux, P. Boyer, S. Miraglia, and D. Fruchart, “Neutron diffraction studies of Zr2NiH(D)x hydrides,” Z. Phys. Chem., 163, 219–224 (1989).

    Article  Google Scholar 

  23. R. W. G. Wyckoff, Crystal Structures, Interscience, Vol. 1, New York (1963), pp. 7–83.

  24. J. E. Jörgensen and R. I. Smith, “On the compression mechanism of FeF3,” Acta Crystallogr. B, 62, 987–992 (2006).

    Article  Google Scholar 

  25. A. Dubertret and P. Lehr, “Description d’unesur structure Zr3O1–x,” C. R. Math, Acad. Sci. Paris, 267, 820–822 (1968).

  26. A. B. Riabov, V. A. Yartys, G. Wiesinger, B. C. Hauback, P. W. Guegan, and I. R. Harris, “Hydrogenation behavior, neutron diffraction studies, and microstructural characterization of boronoxide-doped Zr–V alloys,” J. Alloys Comp., 293, 93–100 (1999).

    Article  Google Scholar 

  27. H. Fukui, M. Fujimoto, Y. Akahama, A. Sano-Furukawa, and T. Hattori, “Structure change of monoclinic ZrO2 baddeleyite involving softenings of bulk modulus and atom vibrations,” Acta Crystallogr. B, 75, 742–749 (2019).

    Article  CAS  Google Scholar 

  28. J. Gatterer, G. Dufek, P. Ettmayer, and P. Kieffer, “Daskubische Tantalmononitrid (B1-Typ) und seine Mischbarkeitmit den isotypen Übergangs metall-nitriden und carbiden,” Monat. Chem. Verw., 106, 1137–1147 (1975).

  29. L. Thomassen, “An X-ray investigation of the system Cr2O3–NiO,” J. Amer. Chem. Soc., 62, 1134–1135 (1940).

    Article  CAS  Google Scholar 

  30. A. Leineweber, H. Jacobs, and S. Hull, “Ordering of nitrogen in nickel nitride Ni3N determined by neutron diffraction,” Inorg. Chem., 40, 5818–5822 (2001).

    Article  CAS  Google Scholar 

  31. A. B. Riabov, V. A. Yartys, H. Fjellvåg, B. C. Hauback, and M. H. Sørby, “Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice: V. Orthorhombic Zr3CoD6.9 with filled Re3B-type structure,” J. Alloys Comp., 296 (1–2), 312–316 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Zavalii.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 56, No. 3, pp. 93–102, May–June, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavalii, I.Y., Lyutyi, P.Y., Oshchapovskyi, I.V. et al. New Zr3MNx (M = Co, Ni) Subnitrides: Theoretical Analyses, Crystal Structure, and Hydrogen-Sorption Properties. Mater Sci 56, 389–399 (2020). https://doi.org/10.1007/s11003-020-00442-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-020-00442-w

Keywords

Navigation