Skip to main content
Log in

Global correction of projection estimators under local constraint

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

This paper presents a general methodology for nonparametric estimation of a function s related to a nonnegative real random variable X, under a constraint of type \(s(0)=c\). When a projection estimator of the target function is available, we explain how to modify it in order to obtain an estimator which satisfies the constraint. We extend risk bounds from the initial to the new estimator, and propose and study adaptive procedures for both estimators. The example of cumulative distribution function estimation illustrates the method for two different models: the multiplicative noise model (\(Y=XU\) is observed, with U following a uniform distribution) and the additive noise model \((Y=X+V\) is observed where V is a nonnegative nuisance variable with known density).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbaszadeh, M., Chesneau, C., & Doosti, H. I. (2013). Multiplicative censoring: Estimation of a density and its derivatives under the l-p risk. Revstat Statistical Journal, 11, 255–276.

    MathSciNet  MATH  Google Scholar 

  • Abramowitz, M., & Stegun, I. A. (1966). Handbook of mathematical functions. Applied Mathematics Series.

  • Andersen, K. E., & Hansen, M. E. (2001). Multiplicative censoring: Density estimation by a series expansion approach. Journal of Statistical Planning and Inference, 98(1–2), 137–155.

    Article  MathSciNet  Google Scholar 

  • Balabdaoui, F., & Wellner, J. A. (2007). Estimation of a \(k\)-monotone density: Limit distribution theory and the spline connection. Annals of Statistics, 35(6), 2536–2564.

    Article  MathSciNet  Google Scholar 

  • Belomestny, D., Comte, F., & Genon-Catalot, V. (2016). Nonparametric Laguerre estimation in the multiplicative censoring model. Electronic Journal of Statistics, 10(2), 3114–3152.

    Article  MathSciNet  Google Scholar 

  • Bongioanni, B., & Torrea, J. L. (2009). What is a Sobolev space for the Laguerre function systems? Studia Mathematica, 192(2), 147–172.

    Article  MathSciNet  Google Scholar 

  • Brunel, E., & Comte, F. (2009). Cumulative distribution function estimation under interval censoring case 1. Electronic Journal of Statistics, 3, 1–24.

    Article  MathSciNet  Google Scholar 

  • Brunel, E., Comte, F., & Genon-Catalot, V. (2016). Nonparametric density and survival function estimation in the multiplicative censoring model. TEST, 25(3), 570–590.

    Article  MathSciNet  Google Scholar 

  • Carroll, R., & Hall, P. (1988). Optimal rates of convergence for deconvolving a density. Journal of the American Statistical Association, 83(404), 1184–1186.

    Article  MathSciNet  Google Scholar 

  • Chernozhukov, V., Fernández-Val, I., & Galichon, A. (2009). Improving point and interval estimators of monotone functions by rearrangement. Biometrika, 96(3), 559–575.

    Article  MathSciNet  Google Scholar 

  • Comte, F., Cuenod, C.-A., Pensky, M., & Rozenholc, Y. (2017). Laplace deconvolution and its application to dynamic contrast enhanced imaging. Journal of the Royal Statistical Society: Series B, 79(1), 69–94.

    Article  MathSciNet  Google Scholar 

  • Comte, F., & Dion, C. (2016). Nonparametric estimation in a multiplicative censoring model with symmetric noise. Journal of Nonparametric Statistics, 28, 1–34.

    Article  MathSciNet  Google Scholar 

  • Comte, F., & Genon-Catalot, V. (2015). Adaptive laguerre density estimation for mixed poisson models. Electronic Journal of Statistics, 9, 1113–1149.

    Article  MathSciNet  Google Scholar 

  • Comte, F., & Genon-Catalot, V. (2018). Laguerre and hermite bases for inverse problems. Journal of the Korean Statistical Society, 47, 273–296.

    Article  MathSciNet  Google Scholar 

  • Comte, F., Genon-Catalot, V. (2019). Regression function estimation on non compact support as a partly inverse problem. The Annals of the Institute of Mathematical Statistics. https://doi.org/10.1007/s10463-019-00718-2.

    Article  MATH  Google Scholar 

  • Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Annals of Statistics, 19(3), 1257–1272.

    Article  MathSciNet  Google Scholar 

  • Huang, J., & Wellner, J. A. (1995). Estimation of a monotone density or monotone hazard under random censoring. Scandinavian Journal of Statistics, 22(1), 3–33.

    MathSciNet  MATH  Google Scholar 

  • Klein, T., & Rio, E. (2005). Concentration around the mean for maxima of empirical processes. The Annals of Probability, 33(3), 1060–1077.

    Article  MathSciNet  Google Scholar 

  • Mabon, G. (2017). Adaptive deconvolution on the nonnegative real line. Scandinavian Journal of Statistics, 44(3), 707–740.

    Article  MathSciNet  Google Scholar 

  • Pensky, M., & Vidakovic, B. (1999). Adaptative wavelet estimator for nonparametric density deconvolution. Annals of Statistics, 27(6), 2033–2053.

    Article  MathSciNet  Google Scholar 

  • Tsybakov, A. B. (2009). Introduction to nonparametric estimation. Springer Series in Statistics. Springer, New York. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats.

  • van Es, B., Klaassen, C. A. J., & Oudshoorn, K. (2000). Survival analysis under cross-sectional sampling: Length bias and multiplicative censoring. Journal of Statistical Planning and Inference, 91(2), 295–312.

    Article  MathSciNet  Google Scholar 

  • Vardi, Y. (1989). Multiplicative censoring, renewal processes, deconvolution and decreasing density: Nonparametric estimation. Biometrika, 76(4), 751–761.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Comte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Integrated Talagrand’s inequality

Appendix: Integrated Talagrand’s inequality

The following result follows from the Talagrand concentration inequality (see Klein and Rio 2005).

Theorem A.1

Consider \(n \in{\mathbb{N}}^*\), \({\mathcal{F}}\) a class at most countable of measurable functions, and \((X_i)_{i\in \{1,\ldots ,n\}}\) a family of real independent random variables. Define, for \(f\in{\mathcal{F}}\), \(\nu _n(f) =(1/n) \sum _{i=1}^{n} (f(X_i)-{\mathbb{E}}[f(X_i)])\), and assume that there are three positive constants M, H and v such that \({\sup }_{f\in{\mathcal{F}}} \Vert f\Vert _{\infty } \le M\), \({\mathbb{E}}[{\sup }_{f\in{\mathcal{F}}} |\nu _n(f)| ] \le H\), and \({\sup }_{f\in{\mathcal{F}}} ({1}/{n})\sum _{i=1}^{n} \text{Var}(f(X_i)) \le v\). Then for all \(\alpha >0\), setting \(C(\alpha )=(\sqrt{1+\alpha }-1) \wedge 1\), and \(b=1/6\),

$$\begin{aligned}&{\mathbb{E}}\left[ \left( \underset{f\in{\mathcal{F}}}{\sup } |\nu _n(f)|^2-2(1+2\alpha )H^2 \right) _+ \right] \\&\quad \le \frac{4}{b} \left( \frac{v}{n} \exp \left( -b \alpha \frac{n H^2}{v} \right) + \frac{49M^2}{b C^2(\alpha )n^2} \exp \left( -\frac{\sqrt{2}b C(\alpha )\sqrt{\alpha }}{7}\frac{nH}{M} \right) \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comte, F., Dion, C. Global correction of projection estimators under local constraint. J. Korean Stat. Soc. 49, 1255–1284 (2020). https://doi.org/10.1007/s42952-020-00055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-020-00055-8

Keywords

Mathematics Subject Classification

Navigation