Skip to main content
Log in

The Use of Silicon Dioxide Films as Anti-Reflective Coating of Thermoelectric Single-Photon Detector

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Antireflection layers are an important part of the sensitive elements of high performance single photon detectors. We have obtained amorphous silicon dioxide films by electron-beam sputtering on Al2O3, AlN, Si substrates as well as CeB6, LaB6, and W coatings. The elemental composition, microstructure and surface roughness, as well as optical characteristics of the samples obtained under various conditions of spraying are investigated. It is shown that SiO2/Al2O3 and SiO2/AlN two-layer coatings can provide high detection efficiency under registration of the radiation in the near IR region, which is used in telecommunication systems and devices for quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chunnilall, C.J., Degiovanni, I.P., Kuck, S., Muller, I., and Sinclair, A.G., Optical Engineering, 2014, vol. 53, no. 8, p. 081910).

    Article  ADS  Google Scholar 

  2. Eisaman, M.D., Fan, J., Migdall, A., and Polyakov, S.V., Review of Scientific Instruments, 2011, vol. 82, p. 071101.

    Article  ADS  Google Scholar 

  3. Hadfield, R.H., Nature Photonics, 2009, vol. 3, p. 696.

    Article  ADS  Google Scholar 

  4. Zhang, H., Xiao, L., Luo, B., Guo, J., Zhang, L., and Xie, J., J. Phys. D: Appl. Phys., 2020, vol. 53, p. 013 001.

    Article  Google Scholar 

  5. Hiskett, P.A., Rosenberg, D., Peterson, C.G., Hughes, R.J., Nam, S., Lita, A.E., Miller, A.J., and Nordholt, J.E., New J. Phys., 2006, vol. 8, p. 193.

    Article  ADS  Google Scholar 

  6. Knill, E., Laflamme, R., and Milburn, G.J., Nature, 2001, vol. 409, p. 46.

    Article  ADS  Google Scholar 

  7. Fritz, G.G., Wood, K.S., Van Vechten, D., Gyulamiryan, A.L., Kuzanyan, A.S., Giordano, N.J., Jacobs, T.M., Wu, H.-D., Horwits, J.S., and Gulian, A.M., Proc. SPIE, San Diego, CA, 2000, vol. 4140, p. 459.

  8. Van Vechten, D., Wood, K., Fritz, G., Horwitz, J., Gyulamiryan, A., Kuzanyan, A., Vartanyan, V., and Gulian, A., Nucl. Instrum. Meth. Phys. Res. A, 2000, vol. 444, p. 42.

    Article  ADS  Google Scholar 

  9. Petrosyan, V.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2011, vol. 46, p. 125.

    Google Scholar 

  10. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, vol. 52, p. 249.

    Google Scholar 

  11. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., Proc. SPIE, 2017, vol. 10229, p. 10229P.

    Google Scholar 

  12. Kuzanyan, A.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 360.

    Google Scholar 

  13. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 73.

    Google Scholar 

  14. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 242.

    Google Scholar 

  15. Kuzanyan, A.S., Kuzanyan, A.A., Gurin, V.N., Volkov, M.P., and Nikoghosyan, V.R., Semiconductors, 2019, vol. 53, no. 5, p. 682.

    Article  ADS  Google Scholar 

  16. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Contemp. Phys. (Armenian Ac. Sci.), 2019, vol. 54, p. 175.

    Google Scholar 

  17. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., IEEE Sensors, 2020, vol. 20, no. 6, p. 3040.

    Article  ADS  Google Scholar 

  18. Zhang, W.J., You, L.X., Li, H., Huang, J., Lv, C.L., Zhang, L., Liu, X.Y., Wu, J.J., Wang, Z., and Xie, X.M., Sci. China-Phys. Mech. Astron., 2017, vol. 60, p. 120 314.

    Article  Google Scholar 

  19. Zadeh, I.E., Los, J.W.N., Gourgues, R.B.M., Bulgarini, G., Dobrovolskiy, S.M., Zwiller, V., and Dorenbosz, S.N., ArXiv:1801.06574v1, 2018.

  20. Caloz, M., Perrenoud, M., Autebert, C., Korzh, B., Weiss, M., Schönenberger, C., Warburton, R.J., Zbinden, H., and Bussières, F., Appl. Phys. Lett., 2018, vol. 112, p. 061103.

    Article  ADS  Google Scholar 

  21. Dzioba, S. and Rousina, R., J. Vac. Sci. Technol. B, 1994, vol. 12, p. 433.

    Article  Google Scholar 

  22. Volinsky, A.A., Vella, J.B., and Gerberich, W.W., Thin Solid Films, 2003, vol. 429, p. 201.

    Article  ADS  Google Scholar 

  23. Olivares, J., Wegmann, E., Capilla, J., Iborra, E., Clement, M., Vergara, L., and Aigner, R., IEEE Trans Ultrason Ferroelectr Freq Control, 2010, vol. 57, no. 1, p. 23.

    Article  Google Scholar 

  24. Mazur, M., Wojcieszak, D., Domaradzki, J., Kaczmarek, D., Song, S., and Placido, F., Electron Rev., 2013, vol. 21, no. 2, p. 233.

    ADS  Google Scholar 

  25. Boudadena, J., Oelhafena, P., Schulerb, A., Roeckerb, C., and Scartezzinib, J.-L., Solar Energy Materials & Solar Cells, 2005, vol. 89, p. 209.

    Article  Google Scholar 

  26. Raut, H.K., Nair, A.S., Dinachali, S.S., Ganesh, V.A., Walsh, T.M., and Ramakrishna, S., Solar Energy Materials & Solar Cells, 2013, vol. 111, p. 9.

    Article  Google Scholar 

  27. Çetinörgü, E., Baloukas, B., Zabeida, O., Klemberg-Sapieha, J.O., and Martinu, L., Appl. Opt., 2009, vol. 48, no. 23, p. 4536.

    Article  ADS  Google Scholar 

  28. Wang, J.Z., Xiong, Y.Q., Wang, D.S., and Liu, H.K., Physics Procedia, 2011, vol. 18, p. 143.

    Article  ADS  Google Scholar 

  29. Harada, T., Yamada, Y., Uyama, H., Murata, T., and Nozoye, H., Thin Solid Films, 2001, vol. 392, no. 2, p. 191.

    Article  ADS  Google Scholar 

  30. Wu, W.-F. and Chiou, B.-S., Appl. Surf. Sci., 1996, vol. 99, no. 3, p. 237.

    Article  ADS  Google Scholar 

  31. Klug, W., Schneider, R., and Zoller, A., Proc. SPIE, 1990, vol. 1323, p. 88.

    Article  ADS  Google Scholar 

  32. Charnd, N., Johnson, J.E., Oscenbach, J.W., Liang, W.C., Feldman, L.C., Tsang, W.T., Krautter, H.W., Passlack, M., Hull, R., and Swaminathan, V., J. Cryst. Growth, 1995, vol. 148, p. 336.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.M. Gulian for the interest in the work and useful discussions.

Funding

The research was carried out with the financial support of the State Science Committee of the Ministry of Education and Science of the Republic of Armenia within the framework of the scientific project no. 18T-2F134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuzanyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.M. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.A., Petrosyan, S.I., Kuzanyan, A.S. et al. The Use of Silicon Dioxide Films as Anti-Reflective Coating of Thermoelectric Single-Photon Detector. J. Contemp. Phys. 55, 365–370 (2020). https://doi.org/10.3103/S1068337220040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220040106

Keywords:

Navigation