Skip to main content
Log in

Spectroscopic Capabilities of LaF3:Er3+ Crystals for MIR Lasers Cascade Operation

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

A theoretical study of the spectroscopic properties of the low-phonon LaF3:Er3+ crystals determining their laser capabilities in the mid-infrared wavelength range (2.62–4.97 μm) was carried out. The wave functions of the Stark sublevels of 4S3/2, 4F9/2, 4I9/2, 4I11/2, and 4I13/2 of Er3+ ion are constructed by the LSJM-representation. The line strengths of the indirect electric dipole and magnetic dipole inter-Stark transitions are computed and the main spectroscopic and kinetic characteristics of the optical spectrum of the impurity ion are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Walsh, B.M., Lee, H.R., and Barnes, N.P., J. Luminescence, 2016, vol. 169, p. 400.

    Article  ADS  Google Scholar 

  2. Tittel, F.K., Richter, D., and Fried, A., Mid-infrared laser applications in spectroscopy, Solid-State Mid-Infrared Laser Sources, Springer–Verlag, 2003.

    Google Scholar 

  3. Weber, M.J., Phys. Rev., 1967, vol. 157, no. 2, p. 262.

    Article  ADS  Google Scholar 

  4. Carnal, W.T., Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3, H. Crosswhite and H. M. Crosswhite Department of Physics. The Johns Hopkins University, 1995.

  5. Carnall, W.T., Goodman, G.L., Rajnak, K., and Rana, R.S., J. Chem. Phys., 1989, vol. 90, no. 7, p. 3443.

    Article  ADS  Google Scholar 

  6. Onopko, D.E., Optics and Spectroscopy, 1968, vol. 24, p. 301.

    ADS  Google Scholar 

  7. Leushin A.M. Tables of Functions Transforming According to the Irreducible Representations of Crystal Point Groups, Moscow: Nauka, 1968, 143 p. [in Russian].

    Google Scholar 

  8. Demirkhanyan, A.G., Mkrtchyan, A.R., and Badalyan, A.G., Uchenyye zapisi AGPU (The ASPU Scientific Notes), 2015, no. 2, p. 38.

  9. Abraham, A. and Blini, B., Elektronnyy paramagnitnyy rezonans perekhodnykh ionov (Electron Paramagnetic Resonance of Transition Ions, vol. 2, Moscow: Nauka, 1973 [in Russian].

  10. Demirkhanyan, G.G., Laser Physics, 2005, vol. 16, p. 1054.

    Article  ADS  Google Scholar 

  11. Demirkhanyan, G.G., and Kostanyan, R.B., Proceedings SPIE, 2011, vol. 7998, p. 799805.

    Article  Google Scholar 

  12. Demirkhanyan, G.G., Kokanyan, E.P.m, and Demirkhanyan, H.G., J. Contemp. Phys. (Armenian Ac. Sci.), 2015, vol. 50, p. 252.

  13. Kokanyan, E.P., Demirkhanyan, G.G., and Demirkhanyan, H.G., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Demirkhanyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

Appendix

Appendix

Table 5. The Stevens coefficients of the lower \({\text{E}}{{{\text{r}}}^{{{\text{3 + }}}}}\) ion multiplets
Table 6.   The wave functions of Stark states of Er3+ ion in LaF3

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirkhanyan, G.G., Kostanyan, R.B. Spectroscopic Capabilities of LaF3:Er3+ Crystals for MIR Lasers Cascade Operation. J. Contemp. Phys. 55, 306–313 (2020). https://doi.org/10.3103/S1068337220040076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220040076

Keywords:

Navigation