Skip to main content
Log in

The Study of Photoproduction of Cobalt Radioisotopes from Copper Nuclei

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The process of photoproduction of a series of radioisotopes from copper nuclei at the bremsstrahlung end-point energies \(E_{\gamma }^{{\max }}\) = 21, 30, and 40 MeV was studied at the AANL (YerPhI) linear electron accelerator. The relative yields of 61Co, 60Co, 58Co, 57Co with respect to the 61Cu are measured; in particular, at \(E_{\gamma }^{{\max }}\) = 40 MeV they are equal to (2.6 ± 0.3) × 10–2, (2.67 ± 0.04) × 10–2, (9.3 ± 0.6) × 10–2, and (0.76 ± 0.04) × 10–2, respectively. It is shown that the predictions of the TALYS model, as well as the model inserted in the GEANT4 software package are in a contradiction (especially in the case of the GEANT4 code) with the measured relative yields. A continuously decreasing energy dependence was observed for the ratio of unfolded (weighted with the bremsstrahlung spectrum) cross-sections of reactions 65Cu(γ,α)61Co and 63Cu (γ,2n)61Cu, similarly to that observed earlier for the ratio of cross-sections of electronuclear reactions 65Cu(e,e′ + α)61Co and 63Cu (e, e′ + 2n)61Cu. The ratio of the 61Co and 64Cu yields is also measured, being equal to (2. 6± 0.2)×10–3, (3.8 ± 0.6) × 10–3, and (3.2 ± 0.4) × 10–3, respectively, at \(E_{\gamma }^{{\max }}\) = 21 MeV, 30 MeV, and 40 MeV; its value (2.6 ± 0.2) × 10–3 at \(E_{\gamma }^{{\max }}\) = 21 MeV is consistent with the general trend of the dependence of this ratio on the atomic number Z, measured recently at \(E_{\gamma }^{{\max }}\) = 23 MeV for heavier nuclei with the atomic numbers from Z = 47 to Z = 82.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Handbook on Photonuclear Data for Applications Cross-sections and Spectra, IAEA-TECDOC-1178, IAEA, Vienna, 2000.

  2. Nuclear Reaction Database (EXFOR), Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, http://cdfe.sinp.msu.ru/exfor, 2014.

  3. USA National Nuclear Data Center database ‘CSISRS and EXFOR Nuclear reaction experimental data’, https://www.nndc.bnl.gov/exfor/, 2014.

  4. IAEA Nuclear Data Section “Experimental Nuclear Reaction Data (EXFOR)”, https://www-nds.iaea.org/exfor/exfor.htm 2014.

  5. Balabekyan, A.R. et al., J. Contemp. Phys. (Armenian Ac. Sci.), 2020, vol. 55, p. 1.

  6. Koning, A.J., Hilaire, S., and Duijvestijn, M.C., International Conference on Nuclear Data for Science and Technology, 2007, p. 211.

  7. Masumoto, K., Kato, T., and Suzuki, N., Nucl. Instr. Methods, 1978, vol. 157, p. 567.

    Article  Google Scholar 

  8. Antonov, A.D. et al., Yadernaya fizika (Physics of Atomic Nuclei), 1990, vol. 51, p. 305 [in Russian].

    Google Scholar 

  9. Antonov, A.D. et al., Yadernaya fizika (Physics of Atomic Nuclei), 1991, vol. 53, p. 14 [in Russian].

    Google Scholar 

  10. Sirunyan, A. et al., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 271.

  11. Vasenko, A.A. et al., Mod. Phys. Lett. A, 1990, vol. 5, p. 1299.

    Article  ADS  Google Scholar 

  12. Karamian, S.A., Phys. At. Nucl., 2014, vol. 77, p. 1429.

    Article  Google Scholar 

  13. Hakobyan, A.S. et al., J. Contemp. Phys. (Armenian Ac. Sci.), 2020, vol. 55, p. 111.

  14. Allison, J., Amako, K., Apostolakis, J., et al., Nucl. Instrum.Methods Phys. Res. A, 2016, vol. 835 p. 186.

    Article  ADS  Google Scholar 

  15. Bass, R., Nucl. Phys. A, 1974, vol. 231, p. 45.

    Article  ADS  Google Scholar 

  16. Chart of Nuclides https://www.nndc.bnl.gov/nudat2/.

  17. Belyshev, S.S. et al., Eur. Phys. J. A, 2015, vol. 51, p. 67.

    Article  ADS  Google Scholar 

  18. Martins, M.N., Wolynec, E., and Campos, M.C.A., Phys. Rev. C, 1982, vol. 26 p. 1936.

    Article  ADS  Google Scholar 

  19. Antunes, M.L.P. and Martins, M.N., Phys. Rev. C, 1995, vol. 52, p. 1484.

    Article  ADS  Google Scholar 

  20. Varlamov, V.V. et al., Bulletin of the Russian Academy of Sciences. Physics, 80, 317 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the personnel of the AANL (YerPhI) linear accelerator for providing the electron beams for irradiation the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kotanjyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksanyan, A.Y., Amirkhanyan, S.M., Balabekyan, A. et al. The Study of Photoproduction of Cobalt Radioisotopes from Copper Nuclei. J. Contemp. Phys. 55, 275–283 (2020). https://doi.org/10.3103/S1068337220040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220040039

Keywords:

Navigation