Skip to main content
Log in

First Principles of the Classical Mechanics and the Foundations of Statistical Mechanics on the Example of a Disordered Spin System

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

We study the classical multicomponent disordered 3D spin system taking into account the temperature of the medium in the framework of the model of nearest neighbors. The latter allows the 3D problem with a cubic lattice to reduce to the 1D Heisenberg spin glass problem with a random environment. Using the Hamilton equations of motion, a recurrent equation is obtained that connects three spins in successive nodes of 1D lattice, taking into account the influence of a random environment. This equation, together with the corresponding conditions of a local minimum energy in nodes, allows to construct node-by-node a stable spin chains and, accordingly, to calculate all parameters of statistical ensemble from the first principles of classical mechanics, without using any additional assumptions, in particular, the main axiom of statistical mechanics – the equiprobability of statistical states. Using the example of 1D Heisenberg spin glass model, the features of the new approach are studied in detail and the statistical mechanics of the system are constructed without using the standard representation of the partition function (PF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Popescu, S., Short, A.J., and Winter, A., Nature Physics, 2006, vol. 2, p. 754.

    Article  ADS  Google Scholar 

  2. Binder, K. and Young, A., Rev. Mod. Phys., 1986, vol. 58, p. 801.

    Article  ADS  Google Scholar 

  3. Mezard, M., Parisi, G., and Virasoro, M., Spin Glass Theory and Beyond, World Scientific, 1987.

    MATH  Google Scholar 

  4. Young., A., Spin Glasses and Random Fields, World Scientific, 1998.

  5. Fisch, R. and Harris, A., Phys. Rev. Let., 1981, vol. 47, p. 620.

    Article  ADS  Google Scholar 

  6. Ancona-Torres, C. et al., Phys. Rev. Let., 2008, vol. 101, no. 5, p. 057 201.

    Article  Google Scholar 

  7. Bovier, A., Statistical Mechanics of Disordered Systems: A Mathematical Perspective, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge: Cambridge University Press, 2006.

  8. Tu, Y., Tersoff, J., and Grinstein, G., Phys. Rev. Let., 1998, vol. 81, p. 2490.

    Article  ADS  Google Scholar 

  9. Chary, K. and Govil, G., NMR in Biological Systems: From Molecules to Human, Springer, 2008.

    Book  Google Scholar 

  10. Baake, E., Baake, M. and Wagner, H., Phys. Rev. Let., 1997, vol. 78, p. 559.

    Article  ADS  Google Scholar 

  11. Gevorkyan, A.S. and Abajyan, H.G., Physics of Particles and Nuclei Letters, 2012, vol. 9, p. 530.

    Article  ADS  Google Scholar 

  12. Liers, F. et al., Phys. Rev. B, 2003, vol. 68, p. 094 406.

    Article  Google Scholar 

  13. Angles, J.C. et al., Mathl. Comput. Modeling, 1997, vol. 26, no. 8–10, p. l.

    Google Scholar 

  14. Papadimitriou, C., Computational Complexity. (1st Ed.). Addison-Wesley, Section 2.7, 1993.

  15. Lewis, H.R. and Papadimitriou, C., Elements of the Theory of Computation. (1st Ed.). Prentice-Hall. Section 4.6, 1981.

  16. Metropolis, N. et al., J. Chem. Phys., 1953, vol. 21, p. 1087.

    Article  ADS  Google Scholar 

  17. Hayes, B., Am. Scient., 1997, vol. 85, p. 108.

    ADS  Google Scholar 

  18. Monasson, R. et al., Nature (London), 1999, vol. 400, p. 133.

    Article  ADS  MathSciNet  Google Scholar 

  19. Dubois, O., Monasson, R., Selman, B., and Zecchina, R., Theoretical Computer Science, 2001, vol. 265, p. 3.

    Article  MathSciNet  Google Scholar 

  20. Alava, M.J. et al., InPhase Transitions and Critical Phenomena, Ed. by Domb, C. and Lebowitz, J., New York: Academic Press, 2001.

    Google Scholar 

  21. Hartmann, A.K. and Rieger, H., Optimization Algorithms in Physics, Berlin: While-VCH, 2001.

    Book  Google Scholar 

  22. Thompson, C.J., Phase Transitions and Critical Phenomena, Academic Press, 1972, vol. 1, p. 177.

    Google Scholar 

  23. Gevorkyan, A.S. and Sahakyan, V.V., Phys. Atomic Nuclei, 2017, vol. 80, no. 2, p. 366.

    Article  ADS  Google Scholar 

  24. Dagotto, E. and Moreo, A., Phys. Rev. Lett., 1989, vol. 63, p. 2148.

    Article  ADS  Google Scholar 

  25. Manousakis, E., Rev. Mod. Phys., 1991, vol. 63, p. 1.

    Article  ADS  Google Scholar 

  26. Rosner, H., Singh, R.R.P., Zheng, W.H., Oitmaa, J., and Pickett, W.E., Phys. Rev. B, 2003, vol. 67, p. 014 416.

    Article  Google Scholar 

  27. Sirker, J., Weihong, Z., Sushkov, O.P., and Oitmaa, J., Phys. Rev. B, 2006, vol. 73, p. 184 420.

    Article  Google Scholar 

  28. Wen, H.H., Mu, G., Fang, L., Yang, H., and Zhu, X., Europhys. Lett., 2008, vol. 82, p. 17 009.

    Article  Google Scholar 

  29. Rotter, M., Tegel, M., and Johrendt, D., Phys. Rev. Lett., 2008, vol. 101, p. 107 006.

    Article  Google Scholar 

  30. Schmidt, R., Schulenburg, J., Richter, J., and Betts, D.D., Phys. Rev. B, 2002, vol. 66, p. 224406.

    Article  ADS  Google Scholar 

  31. Oitmaa, J. and Zheng, W., Phys. Rev. B, 2004, vol. 69, p. 064 416.

    Article  Google Scholar 

  32. Majumdar, K. and Datta, T., J. Phys.: Condens. Matter, 2009, vol. 21, p. 406004.

    Google Scholar 

  33. Pantic, M.R., Kapor, D.V., Radosevic, S.M., and Mali, P.M., Sol. St. Comm., 2014, vol. 182, p. 55.

    Article  ADS  Google Scholar 

  34. Richter, J., Muller, P., Lohmann, A., and Schmidt, H.-J., Phys. Proc., 2015, vol. 75, p. 813.

    Article  ADS  Google Scholar 

  35. Muller, P., Richter, J., Hauser, A., and Ihle, D., Eur. Phys. J. B, 2015, vol. 88, p. 159.

    Article  ADS  Google Scholar 

  36. Farnell, D.J.J. et al., Phys. Rev. B, 2016, vol. 93, p. 235 123; Mi, B.-Z., Sol. St. Comm., 2016, vol. 239, p. 20.

    Article  Google Scholar 

  37. Mi, B.-Z., Sol. St. Comm., 2017, vol. 251, p. 79.

    Article  ADS  Google Scholar 

  38. Whittaker, E.T., A Treatise on the Analytical Dynamicals of Particles and Rigid Bodies. With an Introduction to the Problem of Three Bodies, Cambridge University Press, 1988.

    Book  Google Scholar 

  39. Kolmogorov, A.N., IEEE Transactions on Information Theory, 1968, vol. 14, no. 5, p. 662.

    Article  MathSciNet  Google Scholar 

  40. Li, M. and Vitányi, P., An introduction to Kolmogorov complexity and its applications, New York: Springer-Verlag, 1997.

    Book  Google Scholar 

  41. Korenblit, I.Ya. and Shender, E.F., Sov. Phys. Usp., 1989, vol. 32 p. 139.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Gevorkyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A.S. Gevorkyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorkyan, A.S., Sahakyan, V.V. First Principles of the Classical Mechanics and the Foundations of Statistical Mechanics on the Example of a Disordered Spin System. J. Contemp. Phys. 55, 265–274 (2020). https://doi.org/10.3103/S106833722004009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833722004009X

Keywords:

Navigation