Skip to main content
Log in

Viscometric and Densimetric Study of Water–PEG–KBr Systems

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The dynamic viscosity and density of a water–PEG–KBr system are measured in the ranges of 293.15–323.15 K and 0–0.001 mol parts. Polyethylene glycol samples with average molecular weights of 1000, 1500, 3000, 4000, and 6000 g/mol are used. The concentration of KBr is 0.01 mol parts. The activation parameters of viscous flow (Gibbs energy, enthalpy, and entropy) and the partial molar volume of PEG in a solution are calculated using experimental data in the specified range of temperatures and concentrations. It is shown that the activation parameters of viscous flow grow along with concentration and molar weight. It is found that the partial molar volume of PEG in a solution falls as the concentration rises, and the partial molar volume per monomer does not change, depending on the average molecular weight of PEG. A simple way of determining the hydration number of a polymer molecule is described, based on which the hydration number of a PEG macromolecule in a solution is calculated. It is found that the hydration number of a PEG macromolecule falls as the temperature rises and grows along with the molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. Chen, S. K. Spear, J. G. Huddleston, and R. D. Rogers, J. Green Chem. 7, 64 (2005).

    Article  CAS  Google Scholar 

  2. I. V. Shchulyak, E. I. Grushova, and A. M. Semechenko, Russ. J. Phys. Chem. A 85, 419 (2011).

    Article  Google Scholar 

  3. G. Parmoona, A. Mohammadi Nafchib, and M. Pirdashtic, Phys. Chem. Res. 7, 859 (2019).

    CAS  Google Scholar 

  4. Z. Tang, K. Fang, Y. Song, and F. Sun, J. Polym. 11, 739 (2019).

    CAS  Google Scholar 

  5. K. R. Lange, Surfactants: Synthesis, Properties, Analysis, Application (Professiya, St. Petersburg, 2005) [in Russian].

  6. J. H. Sung, D. C. Lee, and H. J. Park, Polymer 48, 4205 (2007).

    Article  CAS  Google Scholar 

  7. F. F. Bailey and J. V. Koleske, Poly(Ethylene Oxide) (Academic, New York, 1976).

    Google Scholar 

  8. O. Tirosh, Y. Barenholz, J. Katzhendler, and A. Priev, J. Biophys. 74, 1371 (1998).

    Article  CAS  Google Scholar 

  9. E. A. Masimov, H. Sh. Hasanov, and B. G. Pashayev, Liquid Viscosity (Laman, Baku, 2016).

    Google Scholar 

  10. T. Graber, B. Andrews, and J. Asenjo, J. Chromatogr., B 743, 57 (2000).

  11. M. E. Taboada, H. R. Galleguillos, T. A. Graber, and S. Bolado, J. Chem. Eng. 50, 264 (2005).

    CAS  Google Scholar 

  12. E. A. Masimov, B. G. Pashaev, G. Sh. Gasanov, and Sh. N. Gadzhieva, Russ. J. Phys. Chem. A 93, 1054 (2019).

    Article  CAS  Google Scholar 

  13. B. G. Pashayev, J. Low-Dim. Syst. 3 (2), 29 (2019).

    Google Scholar 

  14. B. Madadi, G. Pazuki, and B. Nasernejad, J. Chem. Eng. 58, 2785 (2013).

    CAS  Google Scholar 

  15. E. A. Masimov, B. G. Pashaev, and M. R. Rajabov, Russ. J. Phys. Chem. A 93, 2562 (2019).

    Article  CAS  Google Scholar 

  16. A. Mozafar and J. R. Goodin, Plant Physiol. 67, 64 (1981).

    Article  Google Scholar 

  17. N. F. Leininger, R. Clontz, J. L. Gainer, and D. J. Kirwan, J. Chem. Eng. Comm. 190, 431 (2003).

    Article  CAS  Google Scholar 

  18. J. M. Harris, Poly(Ethylene Glycol)Chemistry. Biotechnical and Biomedical Applications (Springer Science, New York, 1992).

    Book  Google Scholar 

  19. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions,Viscosity, Diffusion and Electrochemical Phenomena (Van Nostrand, New York, 1941).

    Google Scholar 

  20. Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Moscow, 1975; Oxford Univ. Press, Oxford, 1946).

  21. E. A. Masimov, B. G. Pashayev, H. Sh. Hasanov, and N. H. Hasanov, Russ. J. Phys. Chem. A 89, 1244 (2015).

    Article  CAS  Google Scholar 

  22. E. A. Masimov, B. G. Pashaev, and H. Sh. Hasanov, Russ. J. Phys. Chem. A 91, 667 (2017).

    Article  CAS  Google Scholar 

  23. P. Atkins and J. de Paula, Physical Chemistry (Oxford Univ. Press, Oxford, 2006), p. 1067.

    Google Scholar 

  24. B. P. Makagon and T. A. Vondarenko, Vysokomol. Soedin., Ser. A 27, 563 (1985).

    Google Scholar 

  25. A. A. Tager, Physicochemistry of Polymers (Nauchnyi Mir, Moscow, 2007) [in Russian].

    Google Scholar 

  26. G. Nemethy and H. Scheraga, J. Chem. Phys. 36, 3382 (1962).

    Article  CAS  Google Scholar 

  27. V. Kalous and Z. Pavlíček, Biofysikální chemie (Academia, Praha, 2000) [in Czech].

    Google Scholar 

  28. O. Y. Samoylov, Structure of Aqueous Solutions of Electrolytes and Hydration of Ions (Akad. Nauk SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Pashayev.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masimov, E.A., Pashayev, B.G. & Rajabov, M.R. Viscometric and Densimetric Study of Water–PEG–KBr Systems. Russ. J. Phys. Chem. 94, 2574–2580 (2020). https://doi.org/10.1134/S0036024420120183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420120183

Keywords:

Navigation