Skip to main content
Log in

Kinetics of the Oxidative Degradation of KU-2×8 Cation-Exchange Resin Using Hydrogen Peroxide

  • ON THE 100th ANNIVERSARY OF URAL FEDERAL UNIVERSITY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Kinetics of the oxidative degradation of universal strongly acidic cation-exchange resin KU-2×8 is studied using hydrogen peroxide. The effect the nature and concentration of catalytic additives in the form of copper(II) and iron(II) salts have on the oxidation process is determined. It is found that in noncatalytic degradation, the effective rate constant rises from 0.24 × 10−3 to 7.54 × 10−3 g1/3 min−1 upon an increase in temperature in the range of 348–368 K. The activation energies of the noncatalytic oxidation of the cation-exchange resin with hydrogen peroxide are characteristic of a process that occurs in the kinetic region and total 132.46–141.96 kJ/mol. It is shown that introducing catalytic additives helps lower Ea of the process to 40.90 kJ/mol and the temperature of degradation by 15–25 K. The pattern of change in the surface morphology of the cation-exchange resin granules during oxidative decomposition is revealed. The approximate composition of the products of cation-exchange resin decomposition is identified via gas chromatography–mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. I. Smol’nikov, V. F. Markov, L. N. Maskaeva, et al., Butler. Soobshch. 49 (3), 119 (2017). https://doi.org/jbc-01/17-49-3-119

  2. J. Wang and Z. Wan, Prog. Nucl. Energy 78, 47 (2015). https://doi.org/10.1016/j.pnucene.2014.08.003

    Article  CAS  Google Scholar 

  3. W. H. Lee, T. W. Cheng, Y. C. Ding, et al., J. Environ. Manage. 235, 19 (2019). https://doi.org/10.1016/j.jenvman.2019.01.027

    Article  CAS  PubMed  Google Scholar 

  4. O. J. McGann, P. A. Bingham, and N. C. Hyatt, Ceram. Trans. 241, 69 (2013).

    Article  CAS  Google Scholar 

  5. H. C. Yang, S. Y. Lee, Y. C. Choi, et al., J. Therm. Anal. Calorim. 127, 587 (2017). https://doi.org/10.1007/s10973-016-5817-8

    Article  CAS  Google Scholar 

  6. V. Luca, H. L. Bianchi, F. Allevatto, et al., J. Environ. Chem. Eng. 5, 4165 (2017). https://doi.org/10.1016/j.jece.2017.07.064

    Article  CAS  Google Scholar 

  7. H. A. Castro, V. Luca, and H. L. Bianchi, Environ. Sci. Pollut. Res. 25, 21403 (2018). https://doi.org/10.1007/s11356-017-8766-2

    Article  CAS  Google Scholar 

  8. A. Babuponnusami and K. Muthukumar, J. Environ. Chem. Eng. 2, 557 (2014). https://doi.org/10.1016/j.jece.2013.10.011

    Article  CAS  Google Scholar 

  9. A. D. Bokare and W. Choi, J. Hazard. Mater. 275, 121 (2014). https://doi.org/10.1016/j.jhazmat.2014.04.054

    Article  CAS  PubMed  Google Scholar 

  10. A. E. Kuznetsov, O. V. Knyazev, I. Yu. Maraev, and M. N. Manakov, Biotekhnologiya 16, 66 (2000).

    Google Scholar 

  11. Z. R. Liang, Y. S. Wu, and X. J. Liu, J. Nucl. Radiochem. 29, 71 (2007).

    CAS  Google Scholar 

  12. M. Zahorodna, R. Bogoczek, E. Oliveros, and A. M. Braun, Catal. Today 129, 200 (2007). https://doi.org/10.1016/j.cattod.2007.08.014

    Article  CAS  Google Scholar 

  13. T. L. Gunale, V. V. Mahajani, P. K. Wattal, and C. Srinivas, Chem. Eng. J. 148, 371 (2009). https://doi.org/10.1016/j.cej.2008.09.018

    Article  CAS  Google Scholar 

  14. Z. Wan, L. Xu, and J. Wang, Nucl. Eng. Des. 291, 101 (2015). https://doi.org/10.1016/j.nucengdes.2015.05.009

    Article  CAS  Google Scholar 

  15. Z. Wan, L. Xu, and J. Wang, Chem. Eng. J. 284, 733 (2016). https://doi.org/10.1016/j.cej.2015.09.004

    Article  CAS  Google Scholar 

  16. L. Xu, X. Meng, M. Li, et al., Chem. Eng. J. 361, 1511 (2019). https://doi.org/10.1016/j.cej.2018.09.169

    Article  CAS  Google Scholar 

  17. A. T. Pilipenko and I. V. Pyatnitskii, Analytical Chemistry (Khimiya, Moscow, 1990) [in Russian].

  18. A. N. D’yachenko and V. V. Shagalov, Chemical Kinetics of Heterogeneous Processes (Tomsk. Politekh. Univ., Tomsk, 2014) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kozlova.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, M.M., Markov, V.F., Maskaeva, L.N. et al. Kinetics of the Oxidative Degradation of KU-2×8 Cation-Exchange Resin Using Hydrogen Peroxide. Russ. J. Phys. Chem. 94, 2450–2458 (2020). https://doi.org/10.1134/S0036024420120146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420120146

Keywords:

Navigation