Skip to main content
Log in

Ion-Exchange Transformation for the Targeted Synthesis of Solid Solutions of Metal Chalcogenides

  • ON THE 100th ANNIVERSARY OF URAL FEDERAL UNIVERSITY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The concept of ion-exchange transformation in heterogeneous thin film–aqueous solutions of metal substituents is presented as a promising way of synthesizing multicomponent compounds based on metal chalcogenides. Characteristic features of this process are described and a number of its physicochemical patterns are revealed using data obtained at Yeltsin Ural Federal University’s Faculty of Physical and Colloid Chemistry with thin-film solid solutions of SnxPb1–xSe, CdxPb1–xS, AgxPb1–xS, HgxPb1–xSe, SnxPb1–xS of different compositions. The organization of ion-exchange synthesis is considered, starting from preliminary calculations and ending with interpretation of the final results. The effect the temperature, the morphology and crystal structure of the initial film, the composition of aqueous solution, and the metal substituent have on the depth of the process is described. Data on the solid-phase diffusion of lead ions in a CdS film are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. E. Bobylev, V. F. Markov, M. M. Kozlova, and L. N. Maskaeva, Russ. J. Appl. Chem. 91, 1680 (2018).

    Article  CAS  Google Scholar 

  2. N. A. Suleimanova, N. D. Betenekov, and G. A. Kitaev, Radiokhimiya 23, 30 (1981).

    CAS  Google Scholar 

  3. E. V. Polyakov, Radiokhimiya 35, 90 (1993).

    CAS  Google Scholar 

  4. N. D. Betenekov, A. N. Gubanova, and Yu. T. Chuburkov, Radiokhimiya 23, 21 (1981).

    CAS  Google Scholar 

  5. N. D. Betenekov, E. G. Ipatova, and Yu. V. Egorov, Radiokhimiya 24, 363 (1982).

    CAS  Google Scholar 

  6. N. D. Betenekov, V. V. Kaftailov, E. I. Denisov, et al., Radiokhimiya 28, 599 (1986).

    CAS  Google Scholar 

  7. C. D. Lokhande, V. V. Bhad, and S. S. Dhumure, J. Phys. D: Appl. Phys. 25, 315 (1992).

    Article  Google Scholar 

  8. C. A. Estrada, R. A. Zingaro, and E. A. Meyers, Thin Solid Films 247, 208 (1994). https://doi.org/10.1016/0040-6090(94)90261-5

    Article  CAS  Google Scholar 

  9. V. V. Vol’khin and B. I. L’vovich, Kinet. Katal. 11, 1337 (1970).

    Google Scholar 

  10. V. V. Vol’khin and B. I. L’vovich, Zh. Fiz. Khim. 49, 1512 (1975).

    Google Scholar 

  11. V. V. Vol’khin and B. I. L’vovich, Zh. Neorg. Khim., No. 8, 1992 (1968).

  12. M. Guseinaliev, Estestv. Mat. Nauki Sovrem. Mire, No. 9 (33), 44 (2015).

    Google Scholar 

  13. F. Pfisterer, Thin Solid Films 431–432, 470 (2003). https://doi.org/10.1016/S0040-6090(03)00166-4

    Article  CAS  Google Scholar 

  14. V. S. Taur, R. A. Joshi, A. V. Ghule, et al., Renewable Energy 38, 219 (2012). https://doi.org/10.1016/j.renene.2011.07.024

    Article  CAS  Google Scholar 

  15. E. Flores-García, M. A. Hernández-Landaverde, P. González-García, et al., J. Spectrosc., 1 (2018). https://doi.org/10.1155/2018/1095204

  16. O. I. Diaz-Grijalva, D. Berman-Mendoza, A. Flores-Pacheco, et al., J. Mater. Sci. Mater. Electron. 31, 1722 (2020). https://doi.org/10.1007/s10854-019-02690-2

    Article  CAS  Google Scholar 

  17. M. Ristova, M. Ristov, P. Tosev, et al., Thin Solid Films 315, 301 (1998). https://doi.org/10.1016/S0040-6090(97)00476-8

    Article  CAS  Google Scholar 

  18. A. O. Aleksanyan, V. A. Gan’shin, and Yu. N. Korkishko, Sov. Tech. Phys. 34, 236 (1989).

    Google Scholar 

  19. A. O. Aleksanyan, V. A. Gan’shin, Yu. N. Korkishko, et al., Neorg. Mater. 27, 1798 (1991).

    CAS  Google Scholar 

  20. Z. I. Smirnova, L. N. Maskaeva, V. I. Voronin, et al., Butler. Soobshch. 21 (7), 29 (2010).

    Google Scholar 

  21. Z. I. Smirnova, L. N. Maskaeva, V. I. Voronin, et al., Butler. Soobshch. 33 (2), 99 (2013).

    Google Scholar 

  22. Z. I. Smirnova, L. N. Maskaeva, and V. I. Voronin, Kondens. Sredy Mezhfaz. Granitsy 14, 250 (2012).

    CAS  Google Scholar 

  23. Z. I. Smirnova, L. N. Maskaeva, V. F. Markov, et al., J. Mater. Sci. Technol. 31, 790 (2015). https://doi.org/10.1016/j.jmst.2015.06.003

    Article  CAS  Google Scholar 

  24. L. N. Maskaeva, E. A. Dubinina, Kh. N. Mukhamedzyanov, et al., Butler. Soobshch. 27 (15), 65 (2011).

    Google Scholar 

  25. L. N. Maskaeva, V. F. Markov, and A. A. Moskaleva, Butler. Soobshch. 26 (10), 36 (2011).

    Google Scholar 

  26. R. Kh. Saryeva, L. N. Maskaeva, V. F. Markov, et al., Butler. Soobshch. 33 (2), 99 (2013).

    Google Scholar 

  27. V. F. Markov, N. A. Forostyanaya, A. N. Ermakov, et al., Butler. Soobshch. 27 (16), 56 (2011).

    Google Scholar 

  28. N. A. Forostyanaya, N. V. Permyakov, A. O. Polepishina, et al., Khim. Fiz. Mezosk. 16, 274 (2014).

    CAS  Google Scholar 

  29. N. A. Forostyanaya, L. N. Maskaeva, V. F. Markov, et al., Fundam. Probl. Sovrem. Materialoved. 11, 453 (2014).

    Google Scholar 

  30. N. A. Forostyanaya, A. O. Polepishina, V. F. Markov, et al., Chem. Technol. Acta 1 (3), 98 (2014). https://doi.org/10.15826/chimtech.2014.1.3.719

    Article  Google Scholar 

  31. L. N. Maskaeva, N. A. Forostyanaya, V. F. Markov, and V. I. Voronin, Russ. J. Inorg. Chem. 60, 552 (2015). https://doi.org/10.1134/S0036023615050150

    Article  CAS  Google Scholar 

  32. N. A. Forostyanaya, L. N. Maskaeva, S. A. Bakhteev, R. A. Yusupov, V. F. Markov, S. G. Vasil’ev, and V. I. Voronin, Russ. J. Phys. Chem. A 91, 1539 (2017). https://doi.org/10.1134/S0036024417080106

    Article  CAS  Google Scholar 

  33. N. A. Forostyanaya, L. N. Maskaeva, Z. I. Smirnova, et al., Thin Solid Films 657, 101 (2018). https://doi.org/10.1016/j.tsf.2018.04.031

    Article  CAS  Google Scholar 

  34. L. N. Maskaeva, Z. I. Smirnova, V. I. Voronin, et al., Fundam. Probl. Sovrem. Materialoved. 8 (3), 55 (2011).

    Google Scholar 

  35. N. E. Kotlovanova, N. A. Forostyanaya, Z. I. Smirnova, et al., Butler. Soobshch. 38 (6), 88 (2014).

    Google Scholar 

  36. M. V. Zil’berman, V. V. Vol’khin, and N. F. Kalinin, Kolloidn. Zh. 40, 982 (1978).

    Google Scholar 

  37. N. I. Glistenko, Tr. Khim. F-ta. Voronezh. Univ. 32, 79 (1953).

    Google Scholar 

  38. V. V. Vol’khin and B. I. L’vovich, Kinet. Katal. 11, 1337 (1970).

    Google Scholar 

  39. V. V. Vol’khin and B. I. L’vovich, Zh. Fiz. Khim. 49, 1512 (1975).

    Google Scholar 

  40. R. A. Yusupov and O. V. Mikhailov, Deep Ion Exchange in Metal Sulfide Implants (Fen, Kazan, 2004) [in Russian].

  41. R. A. Yusupov, V. S. Tsivunin, N. N. Umarova, and R. F. Abzalov, Russ. J. Phys. Chem. A 71, 466 (1997).

    Google Scholar 

  42. N. N. Umarova, N. I. Movchan, R. A. Yusupov, and V. F. Sopin, Russ. J. Phys. Chem. A 76, 1341 (2002).

    Google Scholar 

  43. R. A. Yusupov, V. S. Tsivunin, N. N. Umarova, et al., Zh. Fiz. Khim. 64, 3312 (1990).

    CAS  Google Scholar 

  44. Z. I. Smirnova, Extended Abstract of Cand. Sci. (Chem.) Dissertation (Ural Fed. Univ., Yekaterinburg, 2013).

  45. Yu. Yu. Lur’e, Handbook of Analytical Chemistry (Khi-miya, Moscow, 1989) [in Russian].

    Google Scholar 

  46. L. N. Maskaeva, Z. I. Smirnova, and V. F. Markov, Russ. Chem. Bull. 63, 1515 (2014). https://doi.org/10.1007/s11172-014-0629-0

    Article  CAS  Google Scholar 

  47. N. A. Forostyanaya, L. N. Maskaeva, and V. F. Markov, Russ. J. Gen. Chem. 85, 2513 (2015). https://doi.org/10.1134/S1063783414120324

    Article  CAS  Google Scholar 

  48. Z. I. Smirnova, V. M. Bakanov, L. N. Maskaeva, V. F. Markov, and V. I. Voronin, Phys. Solid State 56, 2561 (2014). https://doi.org/10.1134/S1063783414120324

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of RF Government Program 211, grant no. 02.A03.21.0006. It was also supported by the Russian Foundation for Basic Research, project no. 20-48-660041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Chufarova.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chufarova, N.A., Maskaeva, L.N. & Markov, V.F. Ion-Exchange Transformation for the Targeted Synthesis of Solid Solutions of Metal Chalcogenides. Russ. J. Phys. Chem. 94, 2413–2420 (2020). https://doi.org/10.1134/S0036024420120079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420120079

Keywords:

Navigation