Skip to main content
Log in

Comparative Study of Cobalt Ferrite and Polyacrylamide Decorated Cobalt Ferrite Microspheres in Structural, Optical, Magnetic, Photoluminescence, and Photocatalytic Properties

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A novel sol–gel method has been adopted to synthesize the cubic structure of CoFe2O4 microspheres (CFOM) with JCPDs card no. 22-1086 and polyacrylamide decorated CoFe2O4 microspheres (p-CFOM). The crystal structure, functional group, surface morphology, light absorption capacity, magnetic, photoluminescence and electrochemical properties and photocatalytic activity of CFOM and p-CFOM for the photocatalytic degradation of Congo red (CR) dye have been systematically discussed. The polyacrylamide introduced to the CFOM obviously enhance the light absorption capacity, squareness ratio, photoluminescence properties and charge transfer and separation efficiency. Based on the light absorption, electrochemical measurement and photocatalytic experiments, the p-CFOM possess a higher photocatalytic activity in photocatalytic degradation of CR dye than CFOM. The light absorption capacity, charge transfer and separation efficiency, and photocatalytic experiments of p-CFOM indicated that the polyacrylamide is a linear polymer as a potential electron collector play a key role to restrain charge carrier recombination. Compared with previous reports, some new properties of AFe2O4 could be obtained for different A site metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. Jiang, L. H. Ai, and A. H. Liu, Synth. Met. 160, 333 (2010).

    Article  CAS  Google Scholar 

  2. Z. B. Tang, P. Liu, J. S. Guo, Z. X. Su, and C. Yang, Appl. Surf. Sci. 255, 2125 (2008).

    Article  CAS  Google Scholar 

  3. C. Wan, Carbohydr. Polym. 134, 144 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. L. C. Zhou, L. Q. Ji, P. C. Ma, Y. M. Shao, H. Zhang, W. J. Gao, and Y. F. Li, J. Hazard. Mater. 265, 104 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. X. F. Wu, W. Wang, F. Li, S. Khaimanov, N. Tsidaeva, and M. Lahoubi, Appl. Surf. Sci. 389, 1003 (2016).

    Article  CAS  Google Scholar 

  6. Q. Wu, H. Zhang, L. C. Zhou, C. Bao, H. Zhu, and Y. M. Zhang, J. Taiwan Inst. Chem. E 67, 1 (2016).

    Article  CAS  Google Scholar 

  7. M. Edrissi, M. Soleymani, and M. Naderi, J. Sol-Gel Sci. Technol. 64, 485 (2012).

    Article  CAS  Google Scholar 

  8. C. Gómez-Solís, S. L. Peralta-Arriaga, L. M. Torres-Martínez, I. Juárez-Ramírez, and L. A. Díaz-Torres, Fuel 188, 197 (2017).

    Article  CAS  Google Scholar 

  9. B. G. Park, J. Mater. Sci. Chem. Eng. 6, 12 (2018).

    CAS  Google Scholar 

  10. A. Berlanga, R. Garcia-Diaz, C. R. Garcia, J. Oliva, M. T. Romero, and L. A. Diaz-Torres, Nano Hybrid. Comp. 16, 63 (2017).

    Article  Google Scholar 

  11. C. R. Garcia, J. Oliva, A. Arroyo, M. A. Garcia-Lobato, C. Gomez-Solis, and L. D. Torres, J. Photochem. Photobiol. A 351, 245 (2018).

    Article  CAS  Google Scholar 

  12. E. Casbeer, V. K. Sharma, and X. Z. Li, Sep. Purif. Technol. 87, 1 (2012).

    Article  CAS  Google Scholar 

  13. L. Ai and J. Jiang, Curr. Appl. Phys. 10, 284 (2010).

    Article  Google Scholar 

  14. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, and W. Song, J. Magn. Magn. Mater. 321, 1251 (2009).

    Article  CAS  Google Scholar 

  15. L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, B. Zou, and S. Feng, J. Magn. Magn. Mater. 301, 445 (2006).

    Article  CAS  Google Scholar 

  16. Y. Q. Chu, Z. W. Fu, and Q. Z. Qin, Electrochim. Acta 49, 4915 (2004).

    Article  CAS  Google Scholar 

  17. W. Fu, H. Yang, M. Li, M. Li, N. Yang, and G. Zou, Mater. Lett. 59, 3530 (2005).

    Article  CAS  Google Scholar 

  18. O. Caltun, I. Dumitru, M. Feder, N. Lupu, and H. Chiriac, J. Magn. Magn. Mater. 320, 869 (2008).

    Article  CAS  Google Scholar 

  19. M. Pita, J. M. Abad, C. Vaz-Dominguez, C. Briones, E. Mateo-Marti, J. A. Martin- Gago, M. P. Morales, and V. M. Fernández, J. Colloid Interface Sci. 321, 484 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. G. Baldi, D. Bonacchi, and C. Innocenti, J. Magn. Magn. Mater. 311, 10 (2007).

    Article  CAS  Google Scholar 

  21. M. Sincai, D. Ganga, D. Bica, and L. Vekas, J. Magn. Magn. Mater. 225, 235 (2001).

    Article  CAS  Google Scholar 

  22. M. J. Sun, X. L. Han, and S. G. Chen, Mater. Sci. Semicond. Proc. 91, 267 (2019).

    Article  CAS  Google Scholar 

  23. A. Ma, L. Zhou, and E. Zhang, Mater. Res. Express 6, 075525 (2019).

    Article  CAS  Google Scholar 

  24. A. K. Bhattacharya, K. K. Mallick, A. Hartridge, and J. L. Woodhead, J. Mater. Sci. 31, 267 (1996).

    Article  CAS  Google Scholar 

  25. Y. Z. Dong, S. H. Piao, K. Zhang, and H. J. Choi, Colloid Surf. A 537, 102 (2018).

    Article  CAS  Google Scholar 

  26. A. N. Ay, B. Zümreoglu-Karan, A. Temel, and V. Rives, Inorg. Chem. 48, 8871 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. R. D. Waldron, Phys. Rev. 99, 1727 (1955).

    Article  CAS  Google Scholar 

  28. W. B. White and B. A. de Angelis, Spectrochim. Acta, A 23, 985 (1967).

    Article  CAS  Google Scholar 

  29. E. Alveroglu, H. Süzeri, U. Kurtan, M. Senel, and A. Baykal, J. Mol. Struct. 1036, 386 (2013).

    Article  CAS  Google Scholar 

  30. D. Spielbauer, G. A. Mekhemer, M. I. Zaki, and H. Knözinger, Catal. Lett. 40, 71 (1996).

    Article  CAS  Google Scholar 

  31. R. Dom, H. G. Kim, and P. H. Borse, Chem. Sel. 2, 2556 (2017).

    CAS  Google Scholar 

  32. M. H. Habibi and H. J. Parhizkar, Spectrochim. Acta, A 127, 102 (2014).

    Article  CAS  Google Scholar 

  33. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, and D. Wexler, J. Phys. Chem. C 113, 4357 (2009).

    Article  CAS  Google Scholar 

  34. A. Gulino, P. Dapporto, P. Rossi, and I. Fragala, Chem. Mater. 15, 3748 (2003).

    Article  CAS  Google Scholar 

  35. R. Xu and H. C. Zeng, Langmuir 20, 9780 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, and C. Piccirillo, Chem. Mater. 13, 588 (2001).

    Article  CAS  Google Scholar 

  37. M. Aslam, M. T. Qamar, M. T. Soomro, I. M. Ismail, N. Salah, T. Almeelbi, and A. Hameed, Appl. Catal. B 180, 391 (2016).

    Article  CAS  Google Scholar 

  38. Y. Gao, S. Chen, D. Cao, G. Wang, and J. Yin, J. Power Sources 195, 1757 (2010).

    Article  CAS  Google Scholar 

  39. Y. Tang, M. Zhang, Z. Wu, Z. Chen, C. Liu, Y. Lin, and F. Chen, Mater. Res. Express 5, 045045 (2018).

    Article  CAS  Google Scholar 

  40. C. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya, and H. Nagabhushana, Mater. Res. Bull. 61, 422 (2015).

    Article  CAS  Google Scholar 

  41. S. B. Abd Hamid, T. L. Tan, C. W. Lai, and E. M. Samsudin, Chin. J. Catal. 35 (12) (2014).

  42. B. Yuan, J. X. Wei, T. J. Hu, H. B. Yao, Z. H. Jiang, Z. W. Fang, and Z. Y. Chu, Chin. J. Catal. 36, 1009 (2015).

    Article  CAS  Google Scholar 

  43. X. Qian, B. Li, H. Y. Mu, J. Ren, Y. Liu, and Y. J. Hao, Inorg. Chem. Front. 4, 1832 (2017).

    Article  CAS  Google Scholar 

  44. Y. Xia, Z. He, J. Su, and K. Hu, J. Mater. Sci-Mater El. 30, 9843 (2019).

    Article  CAS  Google Scholar 

  45. Y. Xia, Z. He, J. Su, B. Tang, and Y. Liu, J. Mater. Sci. Mater. Electron. 29, 15271 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (61502046) and the Chinese Foundation for Basic Research (project no. SLGKY16-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yumei Guo, Ren, C., Li, L. et al. Comparative Study of Cobalt Ferrite and Polyacrylamide Decorated Cobalt Ferrite Microspheres in Structural, Optical, Magnetic, Photoluminescence, and Photocatalytic Properties. Russ. J. Phys. Chem. 94, 2614–2621 (2020). https://doi.org/10.1134/S003602442012033X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442012033X

Keywords:

Navigation