Skip to main content
Log in

The Effect of Cobalt Doping on Physicochemical Properties of La1.5Sr0.5Ni1–yCoyO4+d

  • ON THE 100th ANNIVERSARY OF URAL FEDERAL UNIVERSITY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The La1.5Sr0.5Ni1–yCoyO4+δ (y = 0, 0.1, 0.2, 0.3, 0.4) complex oxides were synthesized by the citrate-nitrate route. The phase purity of the samples was confirmed by the powder X-ray diffraction (PXRD). All studied samples possess the K2NiF4-type structure with space group I4/mmm. The cobalt doping in La1.5Sr0.5Ni1–yCoyO4+δ leads to the expansion of oxygen octahedra in the ab plane and their shrinkage in the c direction, thus, decreasing the structural microstrain. The increase in cobalt concentration results in a gradual increase in oxygen over-stoichiometry, while the oxygen content in La1.5Sr0.5Ni1–yCoyO4+δ shows weak temperature dependence. It is shown that the majority of cobalt cations in these oxides are in the Co3+ state in the whole temperature range studied. The fitting results for the temperature dependencies of the Seebeck coefficient show that the Ni3+ cations are mostly in the low-spin state in La1.5Sr0.5Ni1–yCoyO4+δ in the range of 25–1000°C, although the increase in cobalt content leads to the non-monotonous increase in the fraction of high-spin Ni3+ cations at T > 600°C. The cobalt doping of La1.5Sr0.5Ni1–yCoyO4+δ decreases total conductivity due to the increase in localization of electron holes on the 3d-metal cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Z. Shao and M. O. Tadé, Intermediate-Temperature Solid Oxide Fuel Cells (Springer, Berlin, Heidelberg, 2016).

    Book  Google Scholar 

  2. R. P. Forslund, W. G. Hardin, X. Rong, et al., Nat. Commun. 9, 3150 (2018).

    Article  Google Scholar 

  3. D. C. Zhu, X. Y. Xu, S. J. Feng, et al., Catal. Today 82, 151 (2003).

    Article  CAS  Google Scholar 

  4. A. A. Yaremchenko, V. V. Kharton, M. V. Patrakeev, et al., J. Mater. Chem. 13, 1136 (2003).

    Article  CAS  Google Scholar 

  5. J. A. Kilner and C. K. M. Shaw, Solid State Ionics 154–155, 523 (2002).

    Article  Google Scholar 

  6. L. Ya. Gavrilova, T. V. Aksenova, L. A. Bannykh, et al., J. Struct. Chem. 44, 248 (2003).

    Article  CAS  Google Scholar 

  7. A. R. Gilev, E. A. Kiselev, and V. A. Cherepanov, RSC Adv. 6, 72905 (2016).

  8. A. R. Gilev, E. A. Kiselev, D. M. Zakharov, et al., J. Alloys Compd. 753, 491 (2018).

    Article  CAS  Google Scholar 

  9. R. D. Shannon, Acta Crystallogr., A 32, 751 (1976).

    Article  Google Scholar 

  10. E. N. Naumovich and V. V. Kharton, J. Mol. Struct. 946, 57 (2010).

    Article  CAS  Google Scholar 

  11. T. Klande, K. Efimov, S. Cusenza, et al., J. Solid State Chem. 184, 3310 (2011).

    Article  CAS  Google Scholar 

  12. H. El Shinawi and C. Greaves, J. Mater. Chem. 20, 504 (2010).

    Article  CAS  Google Scholar 

  13. J. M. Bassat, P. Odier, and J. P. Loup, J. Solid State Chem. 119, 124 (1994).

    Article  Google Scholar 

  14. S. Nishiyama, D. Sakaguchi, and T. Hattori, Solid State Commun. 94, 279 (1995).

    Article  CAS  Google Scholar 

  15. I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 (1969).

    Article  CAS  Google Scholar 

  16. S. Wang, K. Li, Z. Chen, et al., Phys. Rev. B 61, 575 (2000).

    Article  CAS  Google Scholar 

  17. V. A. Cherepanov, A. R. Gilev, and E. A. Kiselev, Pure Appl. Chem. 91, 911 (2019).

    Article  CAS  Google Scholar 

  18. A. R. Gilev, E. A. Kiselev, D. M. Zakharov, et al., Solid State Sci. 72, 134 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by Russian Foundation for Basic Research, project no. 19-03-00753 А.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kiselev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilev, A.R., Kiselev, E.A. & Cherepanov, V.A. The Effect of Cobalt Doping on Physicochemical Properties of La1.5Sr0.5Ni1–yCoyO4+d . Russ. J. Phys. Chem. 94, 2474–2481 (2020). https://doi.org/10.1134/S0036024420120110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420120110

Keywords:

Navigation