Skip to main content
Log in

Mapping Atmospheric Corrosivity in Shandong

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Air pollution can significantly accelerate the process of material corrosion, which may cause significant economic losses and serious safety incidents. Atmospheric corrosion maps provide atmospheric corrosivity in a given geographic scope, which can guide the designers to select the most suitable anti-corrosion materials for outdoor projects, also provide useful information for maintenance. This article investigated mapping of atmospheric corrosivity in Shandong Province, China. In order to obtain atmospheric corrosivity data, 100 exposure corrosion test sites were established in Shandong according to International Standard Organization (ISO) 8565. Hot-dip galvanized steel samples were exposed for 1 year in the test sites. Taking the results of exposure corrosion test as the data, inverse distance weighting (IDW) and ordinary kriging (OK) interpolation algorithm were used to estimate the atmospheric corrosivity of Shandong Province according to ISO 9223. The validity of OK and IDW was compared in developing atmospheric corrosion maps of Shandong Province on a 1 × 1 km resolution. The cross-validation results showed that OK interpolation algorithm with Gaussian semivariogram model get the best result in the prediction of corrosion rate. When the corrosion category was used as the criterion, the IDW interpolation algorithm of power 4 performed best, predicted results of 74 sites (n = 100) were consistent with observed. However, high mean relative errors (MRE more than 37%) and relatively low correlation (R2 about 24%) indicated that the prediction results of the two interpolation algorithms had a large error, which was caused by the low data density and the complicated corrosive factors of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed, S. O., Mazloum, R., & Abou-Ali, H. (2018). Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt. Environmental Research, 160, 27–34.

    Article  CAS  Google Scholar 

  • Bailey, T. C., Gatrell, A. C. (1995) Interactive spatial data analysis. Vol 413: Longman Scientific & Technical Essex.

  • Bekele, A., Downer, R., Wolcott, M., Hudnall, W., & Moore, S. (2003). Comparative evaluation of spatial prediction methods in a field experiment for mapping soil potassium. Soil Science, 168, 15–28.

    Article  CAS  Google Scholar 

  • Burrough, P. A., McDonnell, R., McDonnell, R. A., Lloyd, C. D. (2015) Principles of geographical information systems: Oxford university press.

  • Cai, Y., Zhao, Y., Ma, X., Zhou, K., & Chen, Y. (2018). Influence of environmental factors on atmospheric corrosion in dynamic environment. Corrosion Science, 137, 163–175.

    Article  CAS  Google Scholar 

  • Castaño, J., Botero, C., Restrepo, A., Agudelo, E., Correa, E., & Echeverría, F. (2010). Atmospheric corrosion of carbon steel in Colombia. Corrosion Science, 52, 216–223.

    Article  Google Scholar 

  • Chen, F.-W., & Liu, C.-W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10, 209–222.

    Article  Google Scholar 

  • Chico, B., de la Fuente, D., Díaz, I., Simancas, J., & Morcillo, M. (2017). Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases. Materials, 10, 601.

    Article  Google Scholar 

  • Cole, I. S., Muster, T., Azmat, N., Venkatraman, M., & Cook, A. (2011). Multiscale modelling of the corrosion of metals under atmospheric corrosion. Electrochimica Acta, 56, 1856–1865.

    Article  CAS  Google Scholar 

  • Cole, I., Corrigan, P., & Hue, N. V. (2012). Steel corrosion map of Vietnam. Corrosion Science and Technology, 11, 103–107.

    Article  Google Scholar 

  • Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22, 239–252.

    Article  Google Scholar 

  • De la Fuente, D., Vega, J. M., Viejo, F., Díaz, I., & Morcillo, M. (2013). Mapping air pollution effects on atmospheric degradation of cultural heritage. Journal of Cultural Heritage, 14, 138–145.

    Article  Google Scholar 

  • Dean, S. W., Reiser, D. B. (2002). Analysis of long-term atmospheric corrosion results from ISO CORRAG program. Outdoor atmospheric corrosion. ASTM International.

  • Denby, B., Sundvor, I., Cassiani, M., de Smet, P., de Leeuw, F., & Horálek, J. (2010). Spatial mapping of ozone and SO2 trends in Europe. Science of the Total Environment, 408, 4795–4806.

    Article  CAS  Google Scholar 

  • Fathoni, U., Zakaria, C., Rohayu, C. (2013). Development of corrosion risk map for Peninsular Malaysia using climatic and air pollution data. IOP Conference Series: Earth and Environmental Science. 16. IOP Publishing, pp. 012088.

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation: Oxford University press on demand.

  • Hou, B., Li, X., Ma, X., Du, C., Zhang, D., Zheng, M. et al (2017). The cost of corrosion in China. npj Materials Degradation 1: 4.

  • Huang, J., Meng, X., Zheng, Z., & Gao, Y. (2019). Optimization of the atmospheric corrosivity mapping of Guangdong Province. Materials and Corrosion, 70, 91–101.

    Article  CAS  Google Scholar 

  • Ivaskova, M., Kotes, P., & Brodnan, M. (2015). Air pollution as an important factor in construction materials deterioration in Slovak Republic. Procedia Engineering, 108, 131–138.

    Article  CAS  Google Scholar 

  • Kambezidis, H. D., & Kalliampakos, G. (2013). Mapping atmospheric corrosion on modern materials in the Greater Athens area. Water, Air, & Soil Pollution, 224, 1463.

    Article  Google Scholar 

  • Karaca, F. (2013). Mapping the corrosion impact of air pollution on the historical peninsula of Istanbul. Journal of Cultural Heritage, 14, 129–137.

    Article  Google Scholar 

  • Kim, Y., Lim, H., Kim, J., Hwang, W., & Park, Y. (2011). Corrosion cost and corrosion map of Korea. Corrosion Science and Technology, 10, 3368–3383.

    Google Scholar 

  • Knotkova, D., Boschek, P., Kreislova, K. (1995). Results of ISO CORRAG program: Processing of one-year data in respect to corrosivity classification. Atmospheric Corrosion. ASTM International.

  • Koch, G. (2017). Cost of corrosion. Trends in oil and gas corrosion research and technologies. Elsevier, pp. 3–30.

  • Koch, G. H., Brongers, M. P., Thompson, N. G., Virmani, Y. P., Payer, J. H. (2005). Cost of corrosion in the United States. Handbook of environmental degradation of materials. Elsevier, pp. 3-24.

  • Kurtzman, D., Navon, S., & Morin, E. (2009). Improving interpolation of daily precipitation for hydrologic modelling: Spatial patterns of preferred interpolators. Hydrological Processes: An International Journal, 23, 3281–3291.

    Article  Google Scholar 

  • Leuenberger-Minger, A., Buchmann, B., Faller, M., Richner, P., & Zöbeli, M. (2002). Dose–response functions for weathering steel, copper and zinc obtained from a four-year exposure programme in Switzerland. Corrosion Science, 44, 675–687.

    Article  CAS  Google Scholar 

  • Li, J., Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists.

  • Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173–189.

    Article  Google Scholar 

  • Li, X., Zhang, D., Liu, Z., Li, Z., Du, C., & Dong, C. (2015). Materials science: Share corrosion data. Nature, 527, 441–442.

    Article  CAS  Google Scholar 

  • Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34, 1044–1055.

    Article  Google Scholar 

  • Mendoza, A. R., & Corvo, F. (1999). Outdoor and indoor atmospheric corrosion of carbon steel. Corrosion Science, 41, 75–86.

    Article  CAS  Google Scholar 

  • Mendoza, A. R., & Corvo, F. (2000). Outdoor and indoor atmospheric corrosion of non-ferrous metals. Corrosion Science, 42, 1123–1147.

    Article  CAS  Google Scholar 

  • Mikhailov, A. A., Tidblad, J., & Kucera, V. (2004). The classification system of ISO 9223 standard and the dose–response functions assessing the corrosivity of outdoor atmospheres. Protection of Metals, 40, 541–550.

    Article  CAS  Google Scholar 

  • Morcillo, M. (1995). Atmospheric corrosion in Ibero-America: The MICAT project. Atmospheric Corrosion. ASTM International.

  • Natesan, M., Venkatachari, G., & Palaniswamy, N. (2005). Corrosivity and durability maps of India. Corrosion Prevention and Control, 52, 43–55.

    CAS  Google Scholar 

  • Pintos, S., Queipo, N. V., de Rincón, O. T., Rincón, A., & Morcillo, M. (2000). Artificial neural network modeling of atmospheric corrosion in the MICAT project. Corrosion Science, 42, 35–52.

    Article  CAS  Google Scholar 

  • Reiss, D., Rihm, B., Thöni, C., & Faller, M. (2004). Mapping stock at risk and release of zinc and copper in Switzerland—Dose response functions for runoff rates derived from corrosion rate data. Water, Air, and Soil Pollution, 159, 101–113.

    Article  CAS  Google Scholar 

  • Roberge, P., Klassen, R., & Haberecht, P. (2002). Atmospheric corrosivity modeling—A review. Materials & Design, 23, 321–330.

    Article  CAS  Google Scholar 

  • Tidblad, J. (2012). Atmospheric corrosion of metals in 2010–2039 and 2070–2099. Atmospheric Environment, 55, 1–6.

    Article  CAS  Google Scholar 

  • Tidblad, J., Kucera, V., Samie, F., Das, S. N., Bhamornsut, C., Peng, L. C., et al. (2007). Exposure Programme on atmospheric corrosion effects of acidifying pollutants in tropical and subtropical climates. Water, Air, & Soil Pollution: Focus, 7, 241–247.

    Article  CAS  Google Scholar 

  • Ver Hoef, J. M., & Cressie, N. (1993). Multivariable spatial prediction. Mathematical Geology, 25, 219–240.

    Article  Google Scholar 

  • Vera, R., Puentes, M., Araya, R., Rojas, P., & Carvajal, A. (2012). Atmospheric corrosion map of Chile: Results after one year of exposure. Revista de la Construcción, 11, 61–72.

    Article  Google Scholar 

  • Vilche, J., Varela, F., Acuna, G., Codaro, E., Rosales, B., Fernandez, A., et al. (1995). A survey of Argentinean atmospheric corrosion: I—Aluminium and zinc samples. Corrosion Science, 37, 941–961.

    Article  CAS  Google Scholar 

  • Wong, D. W., Yuan, L., & Perlin, S. A. (2004). Comparison of spatial interpolation methods for the estimation of air quality data. Journal of Exposure Science & Environmental Epidemiology, 14, 404.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Technology Research and Development Program of Shandong Province (2016GSF120019) and State Grid Scientific Research Project (520626120005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Fan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Li, X., Jiang, B. et al. Mapping Atmospheric Corrosivity in Shandong. Water Air Soil Pollut 231, 569 (2020). https://doi.org/10.1007/s11270-020-04939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04939-7

Keywords

Navigation