Skip to main content
Log in

A refined trans-Planckian censorship conjecture

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We propose a refined version of trans-Planckian censorship conjecture (TCC), which could be elaborated from the strong scalar weak gravity conjecture combined with some entropy bounds. In particular, no fine-tuning on the inflation model-building is required in the refined TCC, and it automatically passes the tests from those stringy examples that support the original TCC. Furthermore, our refined TCC could be consistent with hilltop eternal inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Susskind, arXiv: hep-th/0302219.

  2. C. Vafa, arXiv: hep-th/0509212.

  3. E. Palti, Fortschr. Phys. 67, 1900037 (2019), arXiv: 1903.06239.

    MathSciNet  Google Scholar 

  4. G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, arXiv: 1806.08362.

  5. G. Dvali, and C. Gomez, Fortschr. Phys. 67, 1800092 (2019).

    MathSciNet  Google Scholar 

  6. D. Andriot, Phys. Lett. B 785, 570 (2018), arXiv: 1806.10999.

    ADS  Google Scholar 

  7. T. Rudelius, J. Cosmol. Astropart. Phys. 2019(08), 009 (2019), arXiv: 1905.05198.

    MathSciNet  Google Scholar 

  8. H. Ooguri, E. Palti, G. Shiu, and C. Vafa, arXiv: 1810.05506.

  9. S. K. Garg, and C. Krishnan, J. High Energ. Phys. 2019(11), 75 (2019).

    Google Scholar 

  10. D. Andriot, and C. Roupec, Fortschr. Phys. 67, 1800105 (2019).

    MathSciNet  Google Scholar 

  11. F. Denef, A. Hebecker, and T. Wrase, Phys. Rev. D 98, 086004 (2018), arXiv: 1807.06581.

    ADS  MathSciNet  Google Scholar 

  12. M. Cicoli, S. de Alwis, A. Maharana, F. Muia, and F. Quevedo, Fortschr. Phys. 67, 1800079 (2019).

    MathSciNet  Google Scholar 

  13. H. Murayama, M. Yamazaki, and T. T. Yanagida, arXiv: 1809.00478.

  14. K. Choi, D. Chway, and C. S. Shin, J. High Energ. Phys. 2018(11), 142 (2018).

    ADS  Google Scholar 

  15. K. Hamaguchi, M. Ibe, and T. Moroi, J. High Energ. Phys. 2018(12), 23 (2018).

    Google Scholar 

  16. C. Han, S. Pi, and M. Sasaki, arXiv: 1809.05507.

  17. S. K. Garg, C. Krishnan, and M. Z. Zaz, J. High Energ. Phys. 2019(3), 29 (2019).

    Google Scholar 

  18. G. Dvali, C. Gomez, and S. Zell, Fortschr. Phys. 67, 1800094 (2019).

    MathSciNet  Google Scholar 

  19. A. Bedroya, and C. Vafa, arXiv: 1909.11063.

  20. A. Borde, A. H. Guth, and A. Vilenkin, Phys. Rev. Lett. 90, 151301 (2003), arXiv: gr-qc/0110012.

    ADS  Google Scholar 

  21. M.-S. Seo, arXiv: 1911.06441.

  22. A. Bedroya, R. Brandenberger, M. Loverde, and C. Vafa, arXiv: 1909.11106.

  23. S. Mizuno, S. Mukohyama, S. Pi, and Y.-L. Zhang, arXiv: 1910.02979.

  24. N. Aghanim, et al. (Planck Collaboration), arXiv: 1807.06209.

  25. R.-G. Cai, and S.-J. Wang, arXiv: 1910.07981.

  26. T. Tenkanen, arXiv: 1910.00521.

  27. S. Das, arXiv: 1910.02147.

  28. G. Goswami, and C. Krishnan, arXiv: 1911.00323.

  29. Y. Cai, and Y.-S. Piao, arXiv: 1909.12719.

  30. S. Brahma, arXiv: 1910.04741.

  31. M. Dhuria, and G. Goswami, arXiv: 1910.06233.

  32. M. Torabian, arXiv: 1910.06867.

  33. K. Schmitz, arXiv: 1910.08837.

  34. A. Berera, and J. R. Caldern, arXiv: 1910.10516.

  35. H.-H. Li, G. Ye, Y. Cai, and Y.-S. Piao, arXiv: 1911.06148.

  36. M. Torabian, arXiv: 1911.12304.

  37. N. Okada, D. Raut, and Q. Shafi, arXiv: 1910.14586.

  38. K. Kadota, C. S. Shin, T. Terada, and G. Tumurtushaa, arXiv: 1910.09460.

  39. W.-C. Lin, and W. H. Kinney, arXiv: 1911.03736.

  40. C. Armendáriz-Picón, T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999).

    ADS  MathSciNet  Google Scholar 

  41. R. Saito, S. Shirai, and M. Yamazaki, arXiv: 1911.10445.

  42. G. Dvali, and C. Gomez, arXiv: 1005.3497.

  43. G. Dvali, G. F. Giudice, C. Gomez, and A. Kehagias, J. High Energ. Phys. 2011(8), 108 (2011).

    Google Scholar 

  44. G. Dvali, C. Gomez, R. S. Isermann, D. Lüst, and S. Stieberger, Nucl. Phys. B 893, 187 (2015), arXiv: 1409.7405.

    ADS  Google Scholar 

  45. H. Ooguri, and C. Vafa, Nucl. Phys. B 766, 21 (2007), arXiv: hep-th/0605264.

    ADS  Google Scholar 

  46. R. Bousso, J. High Energ. Phys. 1999(07), 004 (1999), arXiv: hep-th/9905177.

    Google Scholar 

  47. S. Brahma, arXiv: 1910.12352.

  48. A. Kehagias, and A. Riotto, arXiv: 1911.09050.

  49. E. Gonzalo, and L. E. Ibáñez, J. High Energ. Phys. 2019(8), 118 (2019).

    Google Scholar 

  50. E. Palti, J. High Energ. Phys. 2017(8), 34 (2017).

    Google Scholar 

  51. D. Klaewer, and E. Palti, J. High Energ. Phys. 2017(1), 88 (2017).

    Google Scholar 

  52. F. Baume, and E. Palti, J. High Energ. Phys. 2016(8), 43 (2016).

    Google Scholar 

  53. G. Veneziano, J. High Energ. Phys. 2002(06), 051 (2002), arXiv: hep-th/0110129.

    Google Scholar 

  54. G. Dvali, G. Gabadadze, M. Kolanović, and F. Nitti, Phys. Rev. D 65, 024031 (2001), arXiv: hep-th/0106058.

    ADS  Google Scholar 

  55. N. Arkani-Hamed, S. Dimopoulos, and S. Kachru, arXiv: hep-th/0501082.

  56. J. Distler, and U. Varadarajan, arXiv: hep-th/0507090.

  57. S. Dimopoulos, S. Kachru, J. McGreevy, and J. G. Wacker, J. Cosmol. Astropart. Phys. 2008(08), 003 (2008), arXiv: hep-th/0507205.

    ADS  Google Scholar 

  58. G. Dvali, Fortschr. Phys. 58, 528 (2010), arXiv: 0706.2050.

    MathSciNet  Google Scholar 

  59. G. Dvali, and M. Redi, Phys. Rev. D 77, 045027 (2008), arXiv: 0710.4344.

    ADS  Google Scholar 

  60. G. Dvali, and D. Lüst, Fortschr. Phys. 58, 505 (2010), arXiv: 0912.3167.

    MathSciNet  Google Scholar 

  61. S. Shirai, and M. Yamazaki, arXiv: 1904.10577.

  62. A. Kusenko, V. Takhistov, M. Yamada, and M. Yamazaki, arXiv: 1908.10930.

  63. R. Brustein, and G. Veneziano, Phys. Rev. Lett. 84, 5695 (2000), arXiv: hep-th/9912055.

    ADS  MathSciNet  Google Scholar 

  64. R. Brustein, S. Foffa, and G. Veneziano, Phys. Lett. B 507, 270 (2001).

    ADS  MathSciNet  Google Scholar 

  65. G. Veneziano, arXiv: hep-th/9907012.

  66. R. Brustein, Lect. Notes Phys. 737, 619 (2008), arXiv: hep-th/0702108.

    ADS  MathSciNet  Google Scholar 

  67. J. D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972).

    ADS  Google Scholar 

  68. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    ADS  MathSciNet  Google Scholar 

  69. J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974).

    ADS  Google Scholar 

  70. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    ADS  Google Scholar 

  71. A. H. Guth, and E. J. Weinberg, Nucl. Phys. B 212, 321 (1983).

    ADS  Google Scholar 

  72. A. Vilenkin, Phys. Rev. D 27, 2848 (1983).

    ADS  MathSciNet  Google Scholar 

  73. A. A. Starobinsky, in Stochastic de Sitter (Inflationary) Stage in the Early Universe, edited by H. J. de Vega, and N. Sánchez. Field Theory, Quantum Gravity and Strings. Lecture Notes in Physics (Springer, Berlin, Heidelberg, 1986), 246, pp. 107–126.

    Google Scholar 

  74. A. D. Linde, Mod. Phys. Lett. A 01, 81 (1986).

    ADS  Google Scholar 

  75. M. Aryal, and A. Vilenkin, Phys. Lett. B 199, 351 (1987).

    ADS  MathSciNet  Google Scholar 

  76. G. Barenboim, W. J. Park, and W. H. Kinney, J. Cosmol. Astropart. Phys. 2016(05), 030 (2016), arXiv: 1601.08140.

    Google Scholar 

  77. A. Vilenkin, Phys. Rev. Lett. 72, 3137 (1994), arXiv: hep-th/9402085.

    ADS  Google Scholar 

  78. A. Linde, Phys. Lett. B 327, 208 (1994).

    ADS  Google Scholar 

  79. A. Linde, and D. Linde, Phys. Rev. D 50, 2456 (1994), arXiv: hep-th/9402115.

    ADS  Google Scholar 

  80. L. Boubekeur, and D. H. Lyth, J. Cosmol. Astropart. Phys. 2005(07), 010 (2005), arXiv: hep-ph/0502047.

    Google Scholar 

  81. H. Matsui, and F. Takahashi, Phys. Rev. D 99, 023533 (2019), arXiv: 1807.11938.

    ADS  Google Scholar 

  82. K. Dimopoulos, Phys. Rev. D 98, 123516 (2018), arXiv: 1810.03438.

    ADS  MathSciNet  Google Scholar 

  83. W. H. Kinney, Phys. Rev. Lett. 122, 081302 (2019), arXiv: 1811.11698.

    ADS  Google Scholar 

  84. S. Brahma, and S. Shandera, J. High Energ. Phys. 2019(11), 16 (2019).

    Google Scholar 

  85. Z. Wang, R. Brandenberger, and L. Heisenberg, arXiv: 1907.08943.

  86. J. J. Blanco-Pillado, H. Deng, and A. Vilenkin, arXiv: 1909.00068.

  87. C.-M. Lin, arXiv: 1912.00749.

  88. M. Scalisi, and I. Valenzuela, J. High Energ. Phys. 2019(8), 160 (2019).

    Google Scholar 

  89. Y. Sekino, and L. Susskind, J. High Energ. Phys. 2008(10), 065 (2008), arXiv: 0808.2096.

    Google Scholar 

  90. A. Berera, S. Brahma, and J. R. Caldern, arXiv: 2003.07184.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Gen Cai or Shao-Jiang Wang.

Additional information

We thank Suddhasattwa Brahma, Mark Hertzberg, Ken Olum, Eran Palti, Fabrizio Rompineve, Shan-Ming Ruan, Alexander Vilenkin, and Masaki Yamada for helpful discussions and correspondences. Rong-Gen Cai is supported by the National Natural Science Foundation of China (Grant Nos. 11435006, 11647601, 11690022, 11821505, and 11851302), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB23030100), and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences. Shao-Jiang Wang is supported by the postdoctoral scholarship of Tufts University from National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, RG., Wang, SJ. A refined trans-Planckian censorship conjecture. Sci. China Phys. Mech. Astron. 64, 210011 (2021). https://doi.org/10.1007/s11433-020-1623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1623-9

Navigation