Skip to main content
Log in

Principal Parameters Controlling Water Composition in Saline and Brackish Lakes in Eastern Transbaikalia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Extensive field hydrogeochemical data and thermodynamic simulations demonstrate that the composition of lacustrine waters is controlled not only by evaporation but also by interaction between the waters and rocks. This interaction begins in the catchment areas of the lakes and continues in these lakes themselves, because the waters (regardless of their salinity) do not occur in equilibrium with many of the endogenic minerals. These processes are the most intense in soda lakes, as follows from the highest pH of their waters (9.0–10.7). These values provide evidence that these waters most intensely interact with primary aluminosilicates. The two processes responsible for sulfur behavior in these lakes are sulfate reduction and sulfide oxidation. Different geochemical environments produced in lakes of different type are favorable for the selective enrichment of some elements, which are mobile in these environments and whose concentrations can significantly increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. A. Alekseev, M. B. Bukaty, V. P. Zverev, O. V. Chudaev, and S. L. Shvartsev, Geological Evolution and Self-Organization of the Water—Rock System. Volume 1. Water—Rock Syste, in the Earth’s Crust: Interaction, Kinetics, Equilibrium, and Modeling, Ed. by S. L. Shvartsev (SO RAN, Novosibirsk, 2005) [in Russian].

  2. S. V. Borzenko, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Inst. Prir. Res. Ekol., Criol., Sib. Otd. Ross. Akad. Nauk, Chita 2018).

  3. S. V. Borzenko and Shvartsev S. L. “Chemical composition of salt lakes in East Transbaikalia (Russia),” Appl. Geochem.103, 72–84 (2019). https://doi.org/10.1016/j.apgeochem.2019.02.014

    Article  Google Scholar 

  4. S. V. Borzenko and L. V. Zamana, “Reduced forms of sulfur in the brine of saline–soda Lake Doroninskoe, Eastern Transbaikal region,” Geochem. Int. 49 (3), 253–261 (2011).

    Article  Google Scholar 

  5. M. B. Bukaty, “Development of software for petroleum hydrogeology,” Razved. Okhr. Nedr, No. 2, 37–39 (1997).

    Google Scholar 

  6. J. Chen, F. Wang, G. Wan, D. Tang, D. D. Zang, R. Hunag, J. Li, and T. Xiao, “Sulphate reduction and sulfur cycling in lake sediments,” Acta Geol. Sinica 82 (5), 975–981 (2008).

    Google Scholar 

  7. A. Droubi, “Geochimie des sels et des solutions concentrees par evaporation,” Modele Thermodynamique de Simulation. Application aux Sols Sales du Tchad, Sci.Ceol., Mem. 46, (1976).

  8. A. Droubi, C. Cheverry, B. Fritz, and Y. Tardy, “Geochimie des eaux et des sels dans les sols des polders du lac Tchad: application d’un model thermodynamique de simulation de l’evaporation,” Chem. Geol. 17 (3), 165–177 (1976).

    Article  Google Scholar 

  9. A. I. Dzens-Litovsky, Kara-Bogaz-Gol (Nedra, Leningrad, 1967) [in Russian].

    Google Scholar 

  10. V. K. Filippov and M. V. Charykova, “Die Anwendung der Pitzer–Gleichungen fur die Ber–echnung der Phasengleichgewichte in quaternaren system Na+, \({\text{NH}}_{4}^{ + }\) Cl, \({\text{SO}}_{4}^{{2 - }}\) H2O,” Z. Phys. Chem. 270(1), 49–56 (1989).

    Article  Google Scholar 

  11. V. K. Filippov and L. M. Cheremnykh, “Calculation of thermodynamic functions of the Na2SO4–K2SO4–H2O system at 25°C,” Zh. Prikl. Khim. 56 (7), 1475–1479 (1983).

    Google Scholar 

  12. R. M. Garrels, Solutions, Minerals, and Equilibria (Harper & Row, New York, 1965)

    Google Scholar 

  13. J. P. Greenberg and N. Moller, “The prediction of mineral solubilities in natural waters: A chemical equilibrium model the Na–K–Ca–Cl–SO4–H2O system to high concentration from 0 to 250°C,” Geochim. Cosmochim. Acta 53 (10), 2503–2518 (1989).

    Article  Google Scholar 

  14. V. A. Grinenko and L. N Grinenko, Sulfur Isotope Geochemistry (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  15. M. Gueddari, “Geochimie et thermodynamique deseri dena eri denals. Etude du Lac Natron en Tanzanie et du Chott el eri den Tunisie,“ Sci. Ceol., Mem. (76), 143 (1984).

  16. M. Gueddari, C. Monnin, D. Perret, B. Fritz, and Y. Tardy, “Geochemistry of brines of the Chott el Jerid in Southern Tunisia application of Pitzer’s equations,” Chem. Geol. 39 (1), 165–178 (1983).

    Article  Google Scholar 

  17. L. A. Hardie and H. P. Eugster, “Evaporation of seawater: calculated mineral sequences,” Science 208, 498–500 (1980).

    Article  Google Scholar 

  18. A. V. Ivanov, Hydrochemistry of Rivers and Lakes in Zone of Extremely Continental Climate (DVGU. Vladivostok, 1977) [in Russian].

    Google Scholar 

  19. B. F. Jones, H. P. Eugster, and S. L. Rettig, “Hydrochemistry of the Lake Magadi basin, Kenya,” Geochim. Cosmochim. Acta 41 (1), 53–72 (1977).

    Article  Google Scholar 

  20. W. D. Keller, The Principles of Chemical Weathering (Lucas, Columbia, 1955).

    Book  Google Scholar 

  21. M. N. Kolpakova, S. L. Shvartsev, S. V. Borzenko, V. P. Isupov, and S. S. Shatskaya, “Geochemical features of Kulunda plain lakes (Altay region, Russia),” IOP Conf. Ser.: Earth and Environmental Science 33 (1), no. 012007 (2016).

  22. S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemistry of Groundwaters. Theoretical, Applied, and Ecological Aspects (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  23. V. V. Kurilenko, Modern Basins of Evaporite Sedimentation (St. Petersburg, St. Petersb. Gos. Univ., 1997) [in Russian].

    Google Scholar 

  24. N. S. Kurnakova, and V. I. Nikolaeva, “Solar evaporation of seawater and lacustrine brines,” Izv. Inst. Fiz.-Khim. Anal. Akad. Nauk SSSR, No. 10, 333–366 (1938).

    Google Scholar 

  25. G. A. Leonova, V. A. Bobrov, A. A. Bogush, G. N. Anoshin, and V. A. Bychinskii, “Geochemical characteristics of the modern state of salt lakes in Altai Krai,” Geochem. Int. 45 (10), 1025–1039 (2007).

    Article  Google Scholar 

  26. S. Matsuo, Y. Kuroda, and T. Suzuoki, “Mantle water based on the hydrogen isotope ratios of hydrouse silicates in the mantel,” Geol. Surv. Open–file Rep. 701, 278–280 (1978).

    Google Scholar 

  27. M. A. McCaffrey, B. Lazar, and H. D. Holland, “The evaporation path of seawater and the coprecipitation of Br and K+ with halite,” J. Sedim. Petrol. 57, 928–937 (1987).

    Google Scholar 

  28. Yu. V. Novikov, K. O. Lastochkina, and Z. N. Boldina, Methods of Study of Water Quality in Basins (Meditsina, Moscow, 1990) [in Russian].

    Google Scholar 

  29. E. V. Pinneker, Main Hypotheses of the Formation of Composition of Concentrated Brines. Principles of Hydrogeology. Hydrogeochemistry (Nauka, Novosibirsk, 1982), pp. 202–206 [in Russian].

    Google Scholar 

  30. K. S. Pitser, “A thermodynamic model for aqueous solutions of liquid-like density,” Thermodynamc Mdeling of Geological Materials: Minerals, Fluids, and Melts, Rev. Mineral., Ed. by I. S. E.Carmichael and H. P. Eugster, 17, 97—142 (1987).

  31. S. L. Shvartsev, Hydrogeochemistry of Supergene Zone (Nedra, Moscow, 1978) [in Russian].

    Google Scholar 

  32. S. L. Shvartsev, Hydrogeochemistry of Supergene Zone (Nedra, Moscow, 1998) [in Russian].

    Google Scholar 

  33. S. L. Shvartsev, M. N. Kolpakova, V. P. Isupov, A. G. Vladimirov, and S. Ariunbileg, “Geochemistry and chemical evolution of saline lakes of western Mongolia,” Geochem. Int. 52(5), 388–403 (2014).

    Article  Google Scholar 

  34. E. V. Sklyarov, O. A. Sklyarova, Yu. V. Men’shagin, and M. A. Danilova, “Mineralized lakes of the Transbaikalia and Northeastern Mongolia: specific features of occurrence and ore-generating potential,” Geograph. Prir. Resour. 32 (4), 323–332 (2011).

    Google Scholar 

  35. P. Sonnenfeld, Brines and Evaporites (Academic Press, New York, 1984)

    Google Scholar 

  36. State Geological Map of the Russian Federation. Scale 1 : 1000000 (Third Generation). Aldan—Transbaikalian Series. Sheet M–50 – Borzya. Explanatory Notes, Ed. by E. A. Shivokhin et al., (VSEGEI, St. Petersburg, 2010) [in Russian].

  37. N. M. Strakhov, Principles of Lithogenesis Theory (TLI, Moscow, 1962) [in Russian].

    Google Scholar 

  38. V. D. Strakhovenko, B. L. Shcherbov, I. N. Malikova, and Yu. S. Vosel’, “The regularities of disgtribution of radionuclides and rare-earth elements in bottom sediments of Siberial lakes,” Russ. Geol. Geophys. 51 (11), 1167–1178 (2010).

    Article  Google Scholar 

  39. Textbook on the Chemical Analysis of Continental Surface Waters, Ed. by A. D. Semenov (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  40. J. H. Van’t Hoff, Zur Bildung der Ozeanischen Salzablagerungen, Erstes Heft, Zweites Heft (Vieweg und Sohn, Braunschweig, 1905, 1909).

  41. N. A. Vlasov, Mineral Waters of Southern East Siberia. Volume 1. Hydrogeology of Mineral Waters and their National Economic Significance, Ed. by V. G. Tkachuk and N. I. Tolstikhina (AN SSSR, Moscow—Leningrad, 1961) [in Russian].

  42. J. K. Warren, “Evaporite sedimentology,” J. Sediment. 29 (5), 548–556 (1989).

    Google Scholar 

  43. A. G. Zakharyuk, Extended Abstract of Candidate’s Dissertation in Biology (Inst. Obshch. Eksp. Biol., Ulan-Ude, 2010)

  44. L. V. Zamana and S. V. Borzenko, “Hydrochemical mode of salinized lakes of southeastern Transbaikalia,” Geograf. Prir. Resour. 31 (4), 370–376 (2010).

    Google Scholar 

  45. M. Zheng, Saline Lakes and Salt Basin Deposits in China (Science Press, Beijing, 2014).

    Google Scholar 

  46. I. K. Zherebtsova and N. N. Volkova, “Experimental study of trace-elememnt behavior during natural solar evaporation of Black Sea water and the Sasyk—Sivash Lake brine,” Geokhimiya, No. 7, 832–845 (1966).

    Google Scholar 

Download references

Funding

This study was carried out under a government-financed research project and was partly supported by the Russian Foundation for Basic Research, project no. 18-05-00104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Borzenko.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenko, S.V. Principal Parameters Controlling Water Composition in Saline and Brackish Lakes in Eastern Transbaikalia. Geochem. Int. 58, 1356–1373 (2020). https://doi.org/10.1134/S0016702920090037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920090037

Keywords:

Navigation