Skip to main content
Log in

Brain Astrocytes and Synaptic Dissonance: Neurodegenerative and Mental Pathology

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Experimental and clinical studies provided evidence that astrocytes are inherent components of neural networks. Astrocytes can affect synaptic processes by modulating the activity of neuro- and gliotransmitters. The role of the microglia in the organization of network spaces and the formation of neuroastrocytic domains is considered one of the leading mechanisms of memory and cognitive function. A disorder at the level of synaptic transmission results in the impairment of these processes. For the first time, we present the mechanism by which astrocytes, as components of synaptic processes, become involved in neuropsychic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Araque, A., Parpura, V., Sanzgiri, R.P., et al., Tripartite synapses: glia, the unacknowledged partner, Trends Neurosci., 1999, vol. 22, no. 5, pp. 208–215.

    Article  CAS  PubMed  Google Scholar 

  2. Araque, A., Carmignoto, G., Haydon, P.G., et al., Gliotransmitters travel in time and space, Neuron, 2014, vol. 81, no. 4, pp. 728–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Banasr, M., Chowdhury, G.M., Terwilliger, R., et al., Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole, Mol. Psychiatry, 2010, vol. 15, no. 5, pp. 501–511.

    Article  CAS  PubMed  Google Scholar 

  4. Bernhardi, R., Eugenín-von Bernhardi, J., Flores, B., and Eugenin, J.L., Glial cells and integrity of the nervous system, Adv. Exp. Med. Biol., 2016, vol. 949, pp. 1–24.

    Article  CAS  Google Scholar 

  5. Boisvert, M.M., Erikson, G.A., Shokhirev, M.N., et al., The aging astrocyte transcriptome from multiple regions of the mouse brain, Cell Rep., 2018, vol. 22, no. 1, pp. 269–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bremner, J.D., Narayan, M., Anderson, E.R., et al., Hippocampal volume reduction in major depression, Am. J. Psychiatry, 2000, vol. 157, no. 1, pp. 115–118.

    Article  CAS  PubMed  Google Scholar 

  7. Bushong, E.A., Martone, M.E., Jones, Y.Z., et al., Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, J. Neurosci., 2002, vol. 22, no. 1, pp. 183–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao, X., Li, L.P., Wang, Q., et al., Astrocyte derived ATP modulates depressive-like behaviors, Nat. Med., 2013, vol. 19, no. 6, pp. 773–777.

    Article  CAS  PubMed  Google Scholar 

  9. Chelini, G., Pantazopoulos, H., Durning, P., et al., The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia, Eur. Psychiatry, 2018, vol. 50, pp. 60–69.

    Article  PubMed  Google Scholar 

  10. Clarke, L.E., Liddelow, S.A., Chakraborty, C., et al., Normal aging induces A1-like astrocyte reactivity, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 8, p. e1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Copeland, C.S., Wall, T.M., Sims, R.E., et al., Astrocytes modulate thalamic sensory processing via mGlu2 receptor activation, Neuropharmacology, 2017, vol. 121, pp. 100–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cotter, D., Mackay, D., Chana, G., et al., Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder, Cereb. Cortex, 2002, vol. 12, pp. 386–394.

    Article  PubMed  Google Scholar 

  13. Czéh, B. and Di Benedetto, B., Antidepressants act directly on astrocytes: evidences and functional consequences, Eur. Neuropsychopharm., 2013, vol. 23, no. 3, pp. 171–185.

    Article  CAS  Google Scholar 

  14. Dallérac, G. and Rouach, N., Astrocytes as new targets to improve cognitive functions, Prog. Neurobiol., 2016, vol. 144, pp. 48–67.

    Article  PubMed  Google Scholar 

  15. DeKosky, S.T. and Scheff, S.W., Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity, Ann. Neurol., 1990, vol. 27, pp. 457–464.

    Article  CAS  PubMed  Google Scholar 

  16. Du, T., Rong, Y., Feng, R., et al., Chronic treatment with anti-bipolar drugs down-regulates gene expression of TRPC1 in neurons, Front Cell. Neurosci., 2016, vol. 10, p. 305.

    PubMed  Google Scholar 

  17. Elsayed, M. and Magistretti, P.J., A new outlook on mental illnesses: glial involvement beyond the glue, Front. Cell Neurosci., 2015, vol. 9, pp. 468–477.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gomazkov, O.A., Astrotsyty – zvezdy, kotorye upravlyayut mozgom (Astrocytes are the Stars That Control the Brain), Moscow: IKAR, 2018.

  19. Gomazkov, O.A., Astrocytes as the elements of the regulation of higher brain functions, Neurochem. J., 2019, vol. 13, no. 4, pp. 313–319.

    Article  Google Scholar 

  20. Hajszan, T., MacLusky, N.J., and Leranth, C., Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus, Eur. J. Neurosci., 2005, vol. 21, pp. 1299–1303.

    Article  PubMed  Google Scholar 

  21. Halassa, M.M., Fellin, T., Takano, H., et al., Synaptic islands defined by the territory of a single astrocyte, J. Neurosci., 2007, vol. 27, pp. 6473–6477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Henstridge, C.M., Tzioras, M., and Paolicelli, R.C., Glial contribution to excitatory and inhibitory synapse loss in neurodegeneration, Front. Cell Neurosci., 2019, vol. 13, art. ID 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jha, M.K., Lee, W.H., and Suk, K., Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders, Biochem. Pharmacol., 2016, vol. 103, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  24. Jha, M.K., Kim, J.H., Song, G.J., and Lee, W.H., Functional dissection of astrocyte-secreted proteins: implications in brain health and diseases, Prog. Neurobiol., 2018, vol. 162, pp. 37–69.

    Article  CAS  PubMed  Google Scholar 

  25. Kato, T.A., Myint, A.M., and Steiner, J., Minding glial cells in the novel understandings of mental illness, Front. Cell Neurosci., 2017, vol. 11, p. 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keshavarz, M., Glial cells as key elements in the pathophysiology and treatment of bipolar disorder, Acta Neuropsychiatr., 2017, vol. 29, no. 3, pp. 140–152.

    Article  PubMed  Google Scholar 

  27. Kong, H., Zeng, X.N., Fan, Y., et al., Aquaporin-4 knockout exacerbates corticosterone-induced depression by inhibiting astrocyte function and hippocampal neurogenesis, CNS Neurosci. Ther., 2014, vol. 20, no. 5, pp. 391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koyama, Y., Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target, Front. Cell Neurosci., 2015, vol. 9, p. 261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kubik, L.L. and Philbert, M.A., The role of astrocyte mitochondria in differential regional susceptibility to environmental neurotoxicants: tools for understanding neurodegeneration, Toxicol. Sci., 2015, vol. 144, pp. 7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lana, D., Iovino, L., Nosi, D., and Wenk, G.L., The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats, Exp. Gerontol., 2016, vol. 83, pp. 71–88.

    Article  PubMed  Google Scholar 

  31. Laruelle, M., Schizophrenia: from dopaminergic to glutamatergic interventions, Curr. Opin. Pharmacol., 2014, vol. 14, pp. 97–102.

    Article  CAS  PubMed  Google Scholar 

  32. Laskaris, L.E., Di Biase, M.A., Everall, I., et al., Microglial activation and progressive brain changes in schizophrenia, Br. J. Pharmacol., 2016, vol. 173, pp. 666–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao, Z., Tao, Y., Guo, X., et al., Fear conditioning downregulates Rac1 activity in the basolateral amygdala astrocytes to facilitate the formation of fear memory, Front. Mol. Neurosci., 2017, vol. 10, p. 396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Q., Zhu, H.Y., Li, B., et al., Chronic clomipramine treatment restores hippocampal expression of glial cell line-derived neurotrophic factor in a rat model of depression, J. Affective Disord., 2012, vol. 141, pp. 367–372.

    Article  CAS  Google Scholar 

  35. Martin-Fernandez, M., Jamison, S., Robin, L.M., et al., Synapse-specific astrocyte gating of amygdala-related behavior, Nat. Neurosci., 2017, vol. 20, pp. 1540–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matute, C., Melone, M., Vallejo-Illarramendi, A., and Conti, F., Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics, Glia, 2005, vol. 49, pp. 451–455.

    Article  PubMed  Google Scholar 

  37. Miguel-Hidalgo, J.J., Wilson, B.A., Hussain, S., et al., Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression, J. Psychiatr. Res., 2014, vol. 55, pp. 101–109.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mitterauer, B.J., Psychobiological model of bipolar disorder based on imbalances of glial-neuronal information processing, Open J. Med. Psychol., 2018, vol. 7, pp. 91–110.

    Article  Google Scholar 

  39. Molnar, M., Evans, S.J., Tomita, H., et al., Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 43, pp. 15653–15658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morgun, A.V., Malinovskaya, N.A., Komleva, Yu.K., et al., Structural and functional heterogeneity of astrocytes in the brain, Byull. Sib. Med., 2014, vol. 13, no. 5, pp. 138–148.

    Article  Google Scholar 

  41. Morioka, N., Suekama, K., Zhang, F.F., et al., Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c‑Fos/AP-1 signaling pathway, Br. J. Pharmacol., 2014, vol. 171, pp. 2854–2867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Norden, D.M., Trojanowski, P.J., Walker, F.R., and Godbout, J.P., Insensitivity of astrocytes to interleukin-10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain, Neurobiol. Aging, 2016, vol. 44, pp. 22–41.

  43. Oberheim, X., Wang, S., Goldman, M., and Nedergaard, H., Astrocytic complexity distinguishes the human brain, Trends Neurosci., 2006, vol. 29, pp. 547–553.

  44. Oberheim, N.A., Goldman, S.A., and Nedergaard, M., Heterogeneity of astrocytic form, Methods Mol. Biol., 2012, vol. 814, pp. 23–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pereira, A. and Furlan, F.A., Astrocytes and human cognition: modeling information integration and modulation of neuronal activity, Prog. Neurobiol., 2010, vol. 92, pp. 405–420.

    Article  PubMed  Google Scholar 

  46. Perez, S.M. and Lodge, D.J., New approaches to the management of schizophrenia: focus on aberrant hippocampal drive of dopamine pathways, Drug Des., Dev. Ther., 2014, vol. 8, pp. 887–896.

    Google Scholar 

  47. Popov, V.I., Medvedev, N.I., Rogachevskii, V.V., et al., Three-dimensional synapses and astroglia in the hippocampus of rats and ground squirrels: new structural-functional paradigms on the functioning of the synapse, Biophysics (Moscow), 2003, vol. 48, no. 2, pp. 272–291.

    Google Scholar 

  48. Price, B.R., Norris, C.M., Sompol, P., and Wilcock, D.M., An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia, J. Neurochem., 2018, vol. 144, pp. 644–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rajkowska, G. and Stockmeier, C.A., Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue, Curr. Drug Targets, 2013, vol. 14, no. 11, pp. 1225–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ren, Q., Wang, Z.Z., Chu, S.F., et al., Gap junction channels as potential targets for the treatment of major depressive disorder, Psychopharmacology, 2018, vol. 235, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  51. Robertson, J.M., Astrocyte domains and the three-dimensional and seemless expression of consciousness and explicit memories, Med. Hypothesis, 2013, vol. 81, pp. 1017–1024.

    Article  Google Scholar 

  52. Santello, M., Calì, C., and Bezzi, P., Gliotransmission and the tripartite synapse, Adv. Exp. Med. Biol., 2012, vol. 970, pp. 307–312.

    Article  CAS  PubMed  Google Scholar 

  53. Sheline, Y.I., Wang, P.W., Gado, M.H., et al., Hippocampal atrophy in recurrent major depression, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 9, pp. 3908–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shigetomi, E., Saito, K., Sano, F., and Koizumi, S., Aberrant calcium signals in reactive astrocytes: a key process in neurological disorders, Int. J. Mol. Sci., 2019, vol. 20, no. 4, p. e996.

    Article  CAS  PubMed  Google Scholar 

  55. Spires-Jones, T.L. and Hyman, B.T., The intersection of amyloid beta and tau at synapses in Alzheimer’s disease, Neuron, 2014, vol. 82, no. 4, pp. 756–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stehberg, J., Moraga-Amaro, R., Salazar, C., et al., Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdale, FASEB J., 2012, vol. 26, no. 9, pp. 3649–3657.

    Article  CAS  PubMed  Google Scholar 

  57. Stockmeier, C.A., Mahajan, G.J., Konick, L.C., et al., Cellular changes in the postmortem hippocampus in major depression, Biol. Psychiatry, 2004, vol. 56, pp. 640–650.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sun, W., McConnell, E., Pare, J.F., et al., Glutamate-dependent neuroglial calcium signaling differs between young and adult brain, Science, 2013, vol. 339, no. 6116, pp. 197–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Terry, R.D., Masliah, E., Salmon, D.P., et al., Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol., 1991, vol. 30, pp. 572–580.

    Article  CAS  PubMed  Google Scholar 

  60. Tewari, S. and Parpura, V., A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework, Front. Comput. Neurosci., 2013, vol. 7, p. 145.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Verkhratsky, A., Rodrigues, J.J., and Steardo, L., Astrogliopathy: a central element of neuropsychiatric diseases, Neuroscientist, 2014, vol. 20, pp. 576–588.

    Article  PubMed  Google Scholar 

  62. Vincent, A.J., Gasperini, R., Foa, L., and Small, D.H. Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity, J. Alzheimer’s Dis., 2010, vol. 22, pp. 699–714.

    Article  Google Scholar 

Download references

Funding

The work was carried out as a part of the Fundamental Research Program of the State Academies of Sciences for 2013–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Gomazkov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by A. Khaitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomazkov, O.A. Brain Astrocytes and Synaptic Dissonance: Neurodegenerative and Mental Pathology. Biol Bull Rev 10, 526–533 (2020). https://doi.org/10.1134/S207908642006002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908642006002X

Keywords:

Navigation