Skip to main content
Log in

Functional Expression of Adenosine Receptors in Mesenchymal Stromal Cells

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Extracellular adenosine is a signaling molecule involved in the regulation of physiological processes in a variety of cells, including mesenchymal stromal cells (MSCs). We have shown using microphotometry and Ca2+ probes that the population of MSCs isolated from human adipose tissue contained a small (5–10%) subpopulation of adenosinergic cells. In these cells, A1, A2A, and A2B adenosine receptors functioned; they were coupled with a phosphoinositide signaling cascade. Stimulation of adenosinergic MSCs by adenosine initiated the mobilization of intracellular Ca2+; Ca2+ responses to adenosine were generated according to the “all or nothing” principle: in small doses adenosine did not change the level of intracellular Ca2+, but it evoked Ca2+ responses of almost identical shape and amplitude at any concentration exceeding a threshold. It is noteworthy that the duration of the response delay from the moment of application of adenosine decreased as its concentration increased. Key stages of the generation of the Ca2+ response to adenosine were studied using the inhibitor analysis. The obtained data indicated that the adenosine receptor activated phospholipase C, which stimulated the production of IP3; the latter activated IP3 receptors and initiated the release of stored Ca2+, which most likely was dependent on the concentration of the agonist. This initial Ca2+ signal stimulated a large-scale release of Ca2+ from intracellular stores by the mechanism of Ca2+-induced Ca2+ release, which formed a secondary Ca2+ response of universal shape and amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kaebisch C., Schipper D., Babczyk P., Tobiasch E. 2015. The role of purinergic receptors in stem cell differentiation. Comput. Struct. Biotechnol. J.13, 75–84.

    Article  CAS  Google Scholar 

  2. Katebi M., Soleimani M., Cronstein B.N. 2009. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J. Leukoc. Biol.85 (3), 438–444.

    Article  CAS  Google Scholar 

  3. Carroll S.H., Wigner N.A., Kulkarni N., Johnston-Cox H., Gerstenfeld L.C., Ravid K. 2012. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J. Biol. Chem.287 (19), 15718–15727.

    Article  CAS  Google Scholar 

  4. Carroll S.H., Ravid K. 2013. Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: A focus on adenosine receptors. Expert Rev. Mol. Med.15, e1.

    Article  Google Scholar 

  5. Ciciarello M., Zini R., Rossi L., Salvestrini V., Ferrari D., Manfredini R., Lemoli R.M. 2013. Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Stem Cells Dev.22 (7), 1097–1111.

    Article  CAS  Google Scholar 

  6. He W., Mazumder A., Wilder T., Cronstein B.N. 2013. Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J.27 (9), 3446–3454.

    Article  CAS  Google Scholar 

  7. Shih Y.R., Hwang Y., Phadke A., Kang H., Hwang N.S., Caro E.J., Nguyen S., Siu M, Theodorakis E.A., Gianneschi N.C., Vecchio K.S., Chien S., Lee O.K., Varghese S. 2014. Calcium phosphate bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc. Natl. Acad. Sci. USA.111 (3), 990–995.

    Article  CAS  Google Scholar 

  8. Gharibi B., Abraham A.A., Ham J., Evans B.A. 2011. Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J. Bone Miner. Res.26 (9), 2112–2124.

    Article  CAS  Google Scholar 

  9. Gharibi B., Abraham A.A., Ham J., Evans B.A. 2012. Contrasting effects of A1 and A2B adenosine receptors on adipogenesis. Int. J. Obes.36 (3), 397–406.

    Article  CAS  Google Scholar 

  10. Eisenstein A., Carroll S.H., Johnston-Cox H., Farb M., Gokce N., Ravid K. 2014. An adenosine receptor-Krüppel-like factor 4 protein axis inhibits adipogenesis. J. Biol. Chem.289 (30), 21 071–21 081.

    Article  Google Scholar 

  11. de Oliveira Bravo M., Carvalho J.L., Saldanha-Araujo F. 2016. Adenosine production: A common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal.12 (4), 595–609.

    Article  Google Scholar 

  12. Kerkelä E., Laitinen A., Räbinä J., Valkonen S., Taka-talo M., Larjo A., Veijola J., Lampinen M., Siljander P., Lehenkari P., Alfthan K., Laitinen S. 2016. Adenosinergic immunosuppression by human mesenchymal stromal cells requires co-operation with T cells. Stem Cells.34 (3), 781–790.

    Article  Google Scholar 

  13. Kotova P.D., Sysoeva V.Y., Rogachevskaja O.A., Bystrova M.F., Kolesnikova A.S., Tyurin-Kuzmin P.A., Fadeeva J.I., Tkachuk V.A., Kolesnikov S.S. 2014. Functional expression of adrenoreceptors in mesenchymal stromal cells derived from the human adipose tissue. Biochim. Biophys. Acta.1843, 1899–1908.

    Article  CAS  Google Scholar 

  14. Kotova P.D., Bystrova M.F., Rogachevskaja O.A., Khokhlov A.A., Sysoeva V.Yu., Tkachuk V.A., Kolesnikov S.S. 2018. Coupling of P2Y receptors to Ca2+ mobilization in mesenchymal stromal cells from the human adipose tissue. Cell Calcium. 71, 1–14.

    Article  CAS  Google Scholar 

  15. Fredholm B.B., IJzerman A.P., Jacobson K.A., Klotz K.N., Linden J. 2001. International union of pharmacology. XXV: Nomenclature and classification of adenosine receptors. Pharmacological Reviews.53 (4), 527–552.

    CAS  PubMed  Google Scholar 

  16. Burnstock G. 2018. Purine and purinergic receptors. Brain Neurosci. Adv.2, 2398212818817494.

    Article  Google Scholar 

  17. Sheth S., Brito R., Mukherjea D., Rybak L.P., Ramkumar V. 2014. Adenosine receptors: Expression, function and regulation. Int. J. Mol. Sci.15 (2), 2024–2052

    Article  Google Scholar 

  18. Kotova P.D., Fadeeva J.I., Rogachevskaja O.A., Sy-soeva V.Yu., Tkachuk V.A., Kolesnikov S.S. 2015. Purinergic signaling in mesenchymal stromal cells. Biol. Membranes (Rus.). 32 (4), 265–273.

    CAS  Google Scholar 

  19. Clapham D.E. 2007. Calcium signaling. Cell.131 (6), 1047–1058.

    Article  CAS  Google Scholar 

  20. Xu S.-Z., Zeng F., Boulay G., Grimm C., Harteneck C., Beech D.J. 2005. Block of TRPC5 channels by 2-ami-noethoxydiphenyl borate: A differential, extracellular and voltage-dependent effect. Br. J. Pharmacol. 145 (4), 405–414.

    Article  CAS  Google Scholar 

  21. Mustafa T., Walsh J., Grimaldi M., Eiden L.E. 2010. PAC1hop receptor activation facilitates catecholamine secretion selectively through 2-APB-sensitive Ca2+ channels in PC12 cells. Cell Signal.22 (10), 1420–1426.

    Article  CAS  Google Scholar 

  22. Harteneck C., Gollasch M. 2011. Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr. Pharm. Biotechnol.12 (1), 35–41.

    Article  CAS  Google Scholar 

  23. Ellis-Davies G.C. 2007. Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat. Methods. 4 (8), 619–628.

    Article  CAS  Google Scholar 

  24. D’Alimonte I., Nargi E., Lannutti A., Marchisio M., Pierdomenico L., Costanzo G., Di Iorio P., Ballerini P., Giuliani P., Caciagli F., Ciccarelli R. 2013. Adenosine A1 receptor stimulation enhances osteogenic differentiation of human dental pulp-derived mesenchymal stem cells via WNT signaling. Stem Cell Res.11 (1), 611–624.

    Article  Google Scholar 

  25. Ode A., Schoon J., Kurtz A., Gaetjen M., Ode J.E., Geissler S., Duda G.N. 2013. CD73/5'-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. Eur. Cell Mater.25, 37–47.

    Article  CAS  Google Scholar 

  26. Matta C., Fodor J., Miosge N., Takács R., Juhász T., Rybaltovszki H., Tóth A., Csernoch L., Zákány R. 2015. Purinergic signaling is required for calcium oscillations in migratory chondrogenic progenitor cells. Pflügers Arch.467 (2), 429–442.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project no. 18-34-00365) and a scholarship of the President of the Russian Federation for young scientists and graduate students (project no. SP-924.2018.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Kotova.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures performed were in accordance with the ethical standards approved by the FRC PSCBR RAS and with the Helsinki Declaration of 1964 and its later amendments. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochkina, E.N., Cherkashin, A.P., Kabanova, N.V. et al. Functional Expression of Adenosine Receptors in Mesenchymal Stromal Cells. Biochem. Moscow Suppl. Ser. A 14, 344–350 (2020). https://doi.org/10.1134/S1990747820030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820030101

Keywords:

Navigation