Skip to main content
Log in

Effect of Plasma Membrane Ion Currents on Chlorophyll Fluorescence and Excitation Quenching in Chara Chloroplasts

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Illuminated giant cells of characean algae exhibit membrane excitability as well as the spatial patterns of photosynthesis and transmembrane H+ fluxes. The excitation of plasmalemma under these conditions results in the transient degradation of external alkaline and acid zones and inhibits photosynthesis in the alkaline zones. The generation of action potential in the patterned internodes is followed by cell hyperpolarization that peaks in 1 min and lasts up to 15 min. In order to exclude the influence of drifting resting potential on the chloroplast response to plasma membrane excitation, the voltage clamp mode was applied in this work, and chlorophyll fluorescence changes caused by a short depolarizing pulse were monitored. The depolarizing shift of membrane potential under voltage clamp conditions was found to induce a large depression of \(F_{{\text{m}}}^{{{'}}}\) chlorophyll fluorescence and photosynthetic activity, provided that inward Ca2+ and Cl currents were triggered and that a steady-state inward H+ flux (or OH efflux) persisted before the application of an electric stimulus. The depolarization-induced ion currents measured in the alkaline and acidic cell regions under light and in darkness were found to differ significantly. The results are consistent with the notion that the massive inward H+ flow occurring in the alkaline cell regions under illumination is associated with the acidic shift of cytoplasmic pH. Divergent amplitudes of ionic currents in different cell parts can be partially determined by the presence of numerous plasmalemmal invaginations, charasomes specifically localized in the acid zones, as well as by sharp local changes in external pH in acid zones during the perforation of cell wall with a measuring microelectrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bulychev A.A., Vredenberg W.J. 1995. Enhancement of the light-triggered electrical response in plant cells following their de-energization with uncouplers. Physiol. Plant.94, 64–70.

    Article  CAS  Google Scholar 

  2. Trebacz K., Sievers A. 1998. Action potentials evoked by light in traps of Dionaea muscipula Ellis. Plant Cell Physiol.39, 369–372.

    Article  CAS  Google Scholar 

  3. Bulychev A.A., Kamzolkina N.A. 2006. Effect of action potential on photosynthesis and spatially distributed H+ fluxes in cells and chloroplasts of Chara corallina.Russ. J. Plant Physiol.53, 1–9.

    Article  CAS  Google Scholar 

  4. Pavlovic A., Demko V., Hudák J. 2010. Trap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration. Ann. Bot.105, 37–44.

    Article  CAS  Google Scholar 

  5. Krupenina N.A., Bulychev A.A. 2007. Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta.1767, 781–788.

    Article  CAS  Google Scholar 

  6. Bulychev A.A., Kamzolkina N.A., Rubin A.B. 2005. Effect of plasmalemma electrical excitation on photosystem II activity and nonphotochemical quenching in chloroplasts of cell domains in Chara corallina.Dokl. Biochem. Biophys.401, 127–130.

    Article  CAS  Google Scholar 

  7. Bulychev A.A., Kamzolkina N.A. 2006. Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells. Bioelectrochemistry. 69, 209–215.

    Article  CAS  Google Scholar 

  8. Williamson R.E., Ashley C.C. 1982. Free Ca2+ and cytoplasmic streaming in the alga Chara.Nature.296, 647–651.

    Article  CAS  Google Scholar 

  9. Berestovsky G.N., Kataev A.A. 2005. Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: Voltage-clamp studies of perfused and intact cells of Chara.Eur. Biophys. J.34, 973–986.

    Article  CAS  Google Scholar 

  10. Stael S., Wurzinger B., Mair A., Mehlmer N., Vothknecht U.C., Teige M. 2012. Plant organellar calcium signalling: An emerging field. J. Exp. Bot.63, 1525–1542.

    Article  CAS  Google Scholar 

  11. Hochmal A.K., Schulze S., Trompelt K., Hippler M. 2015. Calcium-dependent regulation of photosynthesis. Biochim. Biophys. Acta.1847, 993–1003.

    Article  CAS  Google Scholar 

  12. Bulychev A.A., Kamzolkina N.A., Luengviriya J., Rubin A.B., Müller S.C. 2004. Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J. Membr. Biol.202, 11–19.

    Article  CAS  Google Scholar 

  13. Krupenina N.A., Bulychev A.A., Roelfsema M.R.G., Schreiber U. 2008. Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem. Photobiol. Sci.7, 681–688.

    Article  CAS  Google Scholar 

  14. Ruban A.V., Johnson M.P., Duffy C.D.P. 2012. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta.1817, 167–181.

    Article  CAS  Google Scholar 

  15. Goh C.H., Schreiber U., Hedrich R. 1999. New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli. Plant, Cell Environ.22, 1057–1070.

    Article  CAS  Google Scholar 

  16. Bulychev A.A., Cherkashin A.A., Rubin A.B., Vredenberg W.J., Zykov V.S., Müller S.C. 2001. Comparative study on photosynthetic activity of chloroplasts in acid and alkaline zones of Chara corallina.Bioelectrochemistry. 53, 225–232.

    Article  CAS  Google Scholar 

  17. Lunevsky V.Z., Zherelova O.M., Vostrikov I.Y., Berestovsky G.N. 1983. Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J. Membr. Biol.72, 43–58.

    Article  Google Scholar 

  18. Kataev A.A. 2008. Functional properties of Ca2+-activated chloride channels in characean algae. Cand. Sci. (Biol.) Diss. Pushchino, Institute of Cell Biophysics, Russ. Acad. Sci., 2008.

  19. Beilby M.J., Al Khazaaly S. 2009. The role of H+/OH channels in the salt stress response of Chara australis.J. Membr. Biol.230, 21–34.

    Article  CAS  Google Scholar 

  20. Bulychev A.A., Krupenina N.A. 2009. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma. Plant Signal. Behav.4, 727–734.

    Article  CAS  Google Scholar 

  21. Beilby M.J., Bisson M.A. 1992. Chara plasmalemma at high pH: Voltage dependence of the conductance at rest and during excitation. J. Membr. Biol.125, 25–39.

    Article  CAS  Google Scholar 

  22. Beilby M.J., Mimura T., Shimmen T. 1993. The proton pump, high pH channels, and excitation: Voltage clamp studies of intact and perfused cells of Nitellopsis obtusa.Protoplasma. 175, 144–152.

    Article  CAS  Google Scholar 

  23. Lucas W.J., Nuccitelli R. 1980. \({\text{HCO}}_{3}^{-}\) and OH transport across the plasmalemma of Chara.Planta. 150, 120–131.

    Article  CAS  Google Scholar 

  24. Coster H.G.L. 1966. Chloride in cells of Chara australis.Aust. J. Biol. Sci.19, 545–554.

    Article  CAS  Google Scholar 

  25. Johannes E., Crofts A., Sanders D. 1998. Control of Cl efflux in Chara corallina by cytosolic pH, free Ca2+, and phosphorylation indicates a role of plasma membrane anion channels in cytosolic pH regulation. Plant Physiol.118, 173–181.

    Article  CAS  Google Scholar 

  26. Bulychev A.A., Komarova A.V. 2014. Long-distance signal transmission and regulation of photosynthesis in characean cells. Biochemistry (Moscow), 79, 273–281.

    Article  CAS  Google Scholar 

  27. Feijó J.A., Sainhas J., Hackett G.R, Kunkel J.G., Hepler P.K. 1999. Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J. Cell Biol.144, 483–496.

    Article  Google Scholar 

  28. Bulychev A.A. Komarova A.V. 2017. Photoregulation of photosystem II activity mediated by cytoplasmic streaming in Chara and its relation to pH bands. Biochim. Biophys. Acta.1858, 386–395.

    Article  CAS  Google Scholar 

  29. Bulychev A.A., Krupenina N.A. 2019. Interchloroplast communications in Chara are suppressed under the alkaline bands and are relieved after the plasma membrane excitation. Bioelectrochemistry.129, 62–69.

    Article  CAS  Google Scholar 

  30. Behera S., Zhaolong X., Luoni L., Bonza M.C., Doccula F.G., De Michelis M.I., Morris R.J., Schwarzländer M., Costa A. 2018. Cellular Ca2+ signals generate defined pH signatures in plants. Plant Cell.30, 2704–2719.

    Article  CAS  Google Scholar 

  31. Plieth C., Sattelmacher B., Hansen U.P. 1997. Cytoplasmic Ca2+–H+ exchange buffers in green algae. Protoplasma. 198, 107–124.

    Article  CAS  Google Scholar 

  32. Franceschi V.R., Lucas W.J. 1980. Structure and possible function(s) of charasomes; complex plasmalemma-cell wall elaborations present in some characean species. Protoplasma.104, 253–271.

    Article  CAS  Google Scholar 

  33. Schmölzer P.M., Höftberger M., Foissner I. 2011. Plasma membrane domains participate in pH banding of Chara internodal cells. Plant Cell Physiol.52, 1274–1288.

    Article  Google Scholar 

  34. Chilcott T.C., Coster H.G.L. 1999. Electrical impedance tomography study of biological processes in a single cell. Ann. N.Y. Acad. Sci.873, 269–286.

    Article  CAS  Google Scholar 

  35. Bulychev A.A., Alova A.V., Bibikova T.N. 2013. Strong alkalinization of Chara cell surface in the area of cell wall incision as an early event in mechanoperception. Biochim. Biophys. Acta.1828, 2359–2369.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Foundation for Basic Research (project no. 20-54-12 015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bulychev.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Translated by A. Bulychev

Abbreviations: PM, plasma membrane; PSII, photosystem II; pHc, cytoplasmic pH; pHo, pH on cell surface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulychev, A.A., Krupenina, N.A. & Cherkashin, A.A. Effect of Plasma Membrane Ion Currents on Chlorophyll Fluorescence and Excitation Quenching in Chara Chloroplasts. Biochem. Moscow Suppl. Ser. A 14, 310–318 (2020). https://doi.org/10.1134/S1990747820040042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820040042

Keywords

Navigation