Skip to main content
Log in

Syntonets: toward a harmony-inspired general model of complex networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report an approach to obtaining complex networks with diverse topology, here called syntonets, taking into account the consonances and dissonances between notes as defined by scale temperaments. Though the fundamental frequency is usually considered, in real-world sounds several additional frequencies (partials) accompany the respective fundamental, influencing both timber and consonance between simultaneous notes. We use a method based on Helmholtz’s consonance approach to quantify the consonances and dissonances between each of the pairs of notes in a given temperament. We adopt two distinct partials structures: (i) harmonic; and (ii) shifted, obtained by taking the harmonic components to a given power β, which is henceforth called the anharmonicity index. The latter type of sounds is more realistic in the sense that they reflect non-linearities implied by real-world instruments. When these consonances/dissonances are estimated along several octaves, respective syntonets can be obtained, in which nodes and weighted edge represent notes, and consonance/dissonance, respectively. The obtained results are organized into two main groups, those related to network science and musical theory. Regarding the former group, we have that the syntonets can provide, for varying values of β, a wide range of topologies spanning the space comprised between traditional models. Indeed, it is suggested here that syntony may provide a kind of universal complex network model. The musical interpretations of the results include the confirmation of the more regular consonance pattern of the equal temperament, obtained at the expense of a wider range of consonances such as that in the meantone temperament. We also have that scales derived for shifted partials tend to have a wider range of consonances/dissonances, depending on the temperament and anharmonicity strength.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. da F Costa,Quantifying complexity (cdt 6), https://www.researchgate.net/publication/332877069_Quantifying_Complexity_CDT-6 (2019)

  2. L. da F Costa,What is a complex network? (cdt 2), https://www.researchgate.net/publication/324312765_What_is_a_Complex_Network_CDT-2 (2018)

  3. L. da F Costa, O.N. Oliveira Jr. G. Travieso, F.A. Rodrigues, P.R. Villas Boas, L. Antiqueira, M.P. Viana, L.E. Correa Rocha, Adv. Phys. 60, 329 (2011)

    Article  ADS  Google Scholar 

  4. P. Erdős, A. Rényi, Publ. Math. (Debrecen) 6, 290 (1959)

    MathSciNet  Google Scholar 

  5. A.L. Barabási, Science 325, 412 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Santo, C. Castellano, arXiv preprint arXiv:0712.2716 (2007)

  7. B. Lacoste, C.H. Comin, A. Ben-Zvi, P.S. Kaeser, X. Xu, L. da F Costa, C. Gu, Neuron 83, 1117 (2014)

    Article  Google Scholar 

  8. A.E. Motter, Y.C. Lai, Phys. Rev. E 66, 065102 (2002)

    Article  ADS  Google Scholar 

  9. L. da F Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)

    Article  ADS  Google Scholar 

  10. R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks, C.H. Yan, J. Number Theory 100, 1 (2003)

    Article  MathSciNet  Google Scholar 

  11. B. Grünbaum, V. Klee, M.A. Perles, G.C. Shephard, G. in Convex polytopes.Graduate Texts in Mathematics (Springer, New York, 1967), Vol. 16, p 221

  12. T. Nishizeki, Discrete Math. 30, 305 (1980)

    Article  MathSciNet  Google Scholar 

  13. J.L. Gross, J. Yellen,Handbook of Graph Theory (CRC Press, 2004)

  14. L. da F Costa, A Self-Consonance/ Dissonance Approach to Anharmonicity. https://www.researchgate.net/publication/333908104_A_Self-ConsonanceDissonance_Approach_to_Anharmonicity (2019)

  15. R. Plomp, W.J.M. Levelt, J. Acoust. Soc. Am. 38, 548 (1965)

    Article  ADS  Google Scholar 

  16. F. Rigaud, B. David, L. Daudet, J. Acoust. Soc. Am. 133, 3107 (2013)

    Article  ADS  Google Scholar 

  17. I. Jolliffe,Principal Component Analysis (Wiley Online Library, 2002)

  18. M. Devaud, H. Thierry, archives-ouvertes: 01532358v2 (2017)

  19. Technical library temperaments vii: Werckmeister iii, https://www.hpschd.nu/tech/tmp/werckmeister.html accessed 21 October 2019

  20. The harpsichord: Truly one of the most magical musical instruments. https://www.hpschd.nu/index.html?nav/nav-4.html&t/welcome.html accessed 21 October 2019

  21. E. Guthrie, H. Morrill, Am. J. Psychol. 40, 624 (1928)

    Article  Google Scholar 

  22. W.A. Sethares, J. Acoust. Soc. Am. 94, 1218 (1993)

    Article  ADS  Google Scholar 

  23. J. Berezovsky, Sci. Adv. 5, eaav8490 (2019)

    Article  ADS  Google Scholar 

  24. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  25. R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)

    Article  ADS  Google Scholar 

  26. B.A.N. Travençolo, L. da F Costa, Phys. Lett. A 373, 89 (2008)

    Article  ADS  Google Scholar 

  27. G.F. de Arruda, A.L. Barbieri, P.M. Rodríguez, F.A. Rodrigues, Y. Moreno, L. da F Costa, Phys. Rev. E 90, 032812 (2014)

    Article  ADS  Google Scholar 

  28. F.N. Silva, C.H. Comin, T.K.D. Peron, F.A. Rodrigues, C. Ye, R.C. Wilson, E.R. Hancock, L. da F Costa, Inf. Sci. 333, 61 (2016)

    Article  Google Scholar 

  29. P. Bonacich, Am. J. Sociol. 92, 1170 (1987)

    Article  Google Scholar 

  30. L.C. Freeman, Sociometry 40, 35 (1977)

    Article  Google Scholar 

  31. M. Girvan, M.E. Newman, Proc. Natl. Acad. Sci. 99, 7821 (2002)

    Article  ADS  Google Scholar 

  32. H. Frank,Graph theory (Addison-Wesley Publishing Co., Reading, MA, 1969)

  33. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  34. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Penrose, inRandom geometric graphs (Oxford University Press, 2003), Vol. 5

  36. P.W. Holland, K.B. Laskey, S. Leinhardt, Soc. Networks 5, 109 (1983)

    Google Scholar 

  37. F.L. Gewers, G.R. Ferreira, H.F. de Arruda, F.N. Silva, C.H. Comin, D.R. Amancio, L. da F Costa, arXiv preprint arXiv:1804.02502 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano da Fontoura Costa.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Fontoura Costa, L., Ferraz de Arruda, H. Syntonets: toward a harmony-inspired general model of complex networks. Eur. Phys. J. B 93, 224 (2020). https://doi.org/10.1140/epjb/e2020-10357-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10357-1

Keywords

Navigation