Skip to main content
Log in

Topological phase transition and conductance in topological crystalline insulator with honeycomb lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Topological crystalline insulators (TCI) represent a new state of quantum matter which is topologically protected by crystalline symmetry. We construct a minimal tight-binding model for 2D thin TCI films with C3-symmetry honeycomb lattice. Four Dirac cones are observed at the high-symmetry points K, K and Γ points, considering the basic term spin-orbit interaction. By introducing the mass term, Dirac gaps can be opened to trigger the topological phase transition. We then numerically investigate the band structure, conductance and local density of state of the TCI films consisting of zigzag and armchair nanoribbons. The results indicate that there is a one-to-one correspondence between gapless topological edge states and nonzero mirror-Chern number. Finally, we apply an external electric field perpendicular to the TCI films, which breaks mirror symmetry. As a result, the nontrivial edge modes are destroyed, and the conductance is turned off by the electric field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  2. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  3. X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  4. B. Yan, C.X. Liu, H.J. Zhang, C.Y. Yam, X.L. Qi, T. Frauenheim, S.C. Zhang, EPL (Europhysics Letters) 90, 37002 (2010)

    Article  ADS  Google Scholar 

  5. T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Nat. Commun. 3, 982 (2012)

    Article  ADS  Google Scholar 

  6. P. Dziawa, B.J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Lusakowska, T. Balasubramanian, B.M. Wojek, M.H. Berntsen et al., Nat. Mater. 11, 1023 (2012)

    Article  ADS  Google Scholar 

  7. Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, Y. Ando, Nat. Phys. 8, 800 (2012)

    Article  Google Scholar 

  8. S.Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. Denlinger, Y. Wang, H. Lin, L. Wray et al., Nat. Commun. 3, 1192 (2012)

    Article  ADS  Google Scholar 

  9. L. Fu, Phys. Rev. Lett. 106, 106802 (2011)

    Article  ADS  Google Scholar 

  10. S. Safaei, P. Kacman, R. Buczko, Phys. Rev. B 88, 045305 (2013)

    Article  ADS  Google Scholar 

  11. Y. Okada, M. Serbyn, H. Lin, D. Walkup, W. Zhou, C. Dhital, M. Neupane, S. Xu, Y.J. Wang, R. Sankar et al., Science 341, 1496 (2013)

    Article  ADS  Google Scholar 

  12. A. Gyenis, I.K. Drozdov, S. Nadj-Perge, O.B. Jeong, J. Seo, I. Pletikosić, T. Valla, G.D. Gu, A. Yazdani, Phys. Rev. B 88, 125414 (2013)

    Article  ADS  Google Scholar 

  13. Y. Tanaka, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Z. Ren, M. Novak, K. Segawa, Y. Ando, Phys. Rev. B 87, 155105 (2013)

    Article  ADS  Google Scholar 

  14. B.M. Wojek, R. Buczko, S. Safaei, P. Dziawa, B.J. Kowalski, M.H. Berntsen, T. Balasubramanian, M. Leandersson, A. Szczerbakow, P. Kacman et al., Phys. Rev. B 87, 115106 (2013)

    Article  ADS  Google Scholar 

  15. M. Ezawa, New J. Phys. 16, 065015 (2014)

    Article  ADS  Google Scholar 

  16. C.H. Hsu, X. Zhou, Q. Ma, N. Gedik, A. Bansil, V.M. Pereira, H. Lin, L. Fu, S.Y. Xu, T.R. Chang, 2D Materials 6, 031004 (2019)

    Article  Google Scholar 

  17. X. Zhou, C.H. Hsu, T.R. Chang, H.J. Tien, Q. Ma, P. Jarillo-Herrero, N. Gedik, A. Bansil, V.M. Pereira, S.Y. Xu et al., Phys. Rev. B 98, 241104 (2018)

    Article  ADS  Google Scholar 

  18. S.K. Das, B. Yan, J. van den Brink, I.C. Fulga, Phys. Rev. B 99, 165418 (2019)

    Article  ADS  Google Scholar 

  19. C.H. Hsu, Z.Q. Huang, C.P. Crisostomo, L.Z. Yao, F.C. Chuang, Y.T. Liu, B. Wang, C.H. Hsu, C.C. Lee, H. Lin et al., Sci. Rep. 6, 18993 (2016)

    Article  ADS  Google Scholar 

  20. C. Fang, M.J. Gilbert, B.A. Bernevig, Phys. Rev. Lett. 112, 046801 (2014)

    Article  ADS  Google Scholar 

  21. J. Liu, T.H. Hsieh, P. Wei, W. Duan, J. Moodera, L. Fu, Nature Mater. 13, 178 (2014)

    Article  ADS  Google Scholar 

  22. G. Yang, J. Liu, L. Fu, W. Duan, C. Liu, Phys. Rev. B 89, 085312 (2014)

    Article  ADS  Google Scholar 

  23. A.A. Taskin, F. Yang, S. Sasaki, K. Segawa, Y. Ando, Phys. Rev. B 89, 121302 (2014)

    Article  ADS  Google Scholar 

  24. C. Yan, J. Liu, Y. Zang, J. Wang, Z. Wang, P. Wang, Z.D. Zhang, L. Wang, X. Ma, S. Ji et al., Phys. Rev. Lett. 112, 186801 (2014)

    Article  ADS  Google Scholar 

  25. B.A. Assaf, F. Katmis, P. Wei, B. Satpati, Z. Zhang, S.P. Bennett, V.G. Harris, J.S. Moodera, D. Heiman, Appl. Phys. Lett. 105, 102108 (2014)

    Article  ADS  Google Scholar 

  26. M. Ezawa, Phys. Lett. A 378, 1180 (2014)

    Article  ADS  Google Scholar 

  27. Z. Wang, X.L. Qi, S.C. Zhang, Phys. Rev. Lett. 105, 256803 (2010)

    Article  ADS  Google Scholar 

  28. Z. Wang, S.C. Zhang, Phys. Rev. X 2, 031008 (2012)

    Google Scholar 

  29. V. Gurarie, Phys. Rev. B 83, 085426 (2011)

    Article  ADS  Google Scholar 

  30. S. Datta (Cambridge University Press, 1997)

  31. H.M. Pastawski, E. Medina, arXiv preprint cond-mat/0103219 (2001)

  32. J. Lan, E.j. Ye, W.q. Sui, X. Zhao, Phys. Chem. Chem. Phys. 15, 671 (2013)

    Article  Google Scholar 

  33. E.N. Economou, inGreen’s Functions in Quantum Physics, (Springer Science & Business Media, 2006) Vol. 7

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Lei Sun or En-Jia Ye.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YL., Ye, EJ. Topological phase transition and conductance in topological crystalline insulator with honeycomb lattice. Eur. Phys. J. B 93, 223 (2020). https://doi.org/10.1140/epjb/e2020-10425-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10425-6

Keywords

Navigation