Skip to main content
Log in

A colloquium on the variational method applied to excitons in 2D materials

  • Colloquium
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this colloquium, we review the research on excitons in van der Waals heterostructures from the point of view of variational calculations. We first make a presentation of the current and past literature, followed by a discussion on the connections between experimental and theoretical results. In particular, we focus our review of the literature on the absorption spectrum and polarizability, as well as the Stark shift and the dissociation rate. Afterwards, we begin the discussion of the use of variational methods in the study of excitons. We initially model the electron–hole interaction as a soft-Coulomb potential, which can be used to describe interlayer excitons. Using an ansatz, based on the solution for the two-dimensional quantum harmonic oscillator, we study the Rytova–Keldysh potential, which is appropriate to describe intralayer excitons in two-dimensional (2D) materials. These variational energies are then recalculated with a different ansatz, based on the exact wavefunction of the 2D hydrogen atom, and the obtained energy curves are compared. Afterwards, we discuss the Wannier–Mott exciton model, reviewing it briefly before focusing on an application of this model to obtain both the exciton absorption spectrum and the binding energies for certain values of the physical parameters of the materials. Finally, we briefly discuss an approximation of the electron–hole interaction in interlayer excitons as an harmonic potential and the comparison of the obtained results with the existing values from both first-principles calculations and experimental measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi et al., Nat. Nano. 13, 246 (2018)

    Article  Google Scholar 

  2. R.F. Frindt, A.D. Yoffe, Proc. R. Soc. Lond. A 273, 69 (1963)

    Article  ADS  Google Scholar 

  3. E. Fortin, W. Sears, J. Phys. Chem. Solids 43, 881 (1982)

    Article  ADS  Google Scholar 

  4. T. Mueller, E. Malic, npj 2D Mat. Appl. 2, 29 (2018)

    Article  Google Scholar 

  5. G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018)

    Article  ADS  Google Scholar 

  6. H. Yu, X. Cui, X. Xu, W. Yao, Natl. Sci. Rev. 2, 57 (2015)

    Article  Google Scholar 

  7. M.V. Durnev, M.M. Glazov, Physics-Uspekhi 61, 825 (2018)

    Article  ADS  Google Scholar 

  8. R.S. Knox, inCollective Excitations in Solids (Springer, USA, 1983), pp. 183–245

  9. N. Rytova, Moscow Univ. Phys. Bull. 3, 30 (1967)

    Google Scholar 

  10. L.V. Keldysh, Sov. J. Exp. Theor. Phys. Lett. 29, 658 (1979)

    ADS  Google Scholar 

  11. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)

    Article  Google Scholar 

  12. X.Y. Dong, R.Z. Li, J.P. Deng, Z.W. Wang, J. Phys. Chem. Solids 134, 1 (2019)

    Article  ADS  Google Scholar 

  13. K.S. Thygesen, 2D Mater. 4, 022004 (2017)

    Article  Google Scholar 

  14. M.N. Brunetti, O.L. Berman, R.Y. Kezerashvili, J. Phys.: Condens. Matter 30, 225001 (2018)

    ADS  Google Scholar 

  15. D. Van Tuan, M. Yang, H. Dery, Phys. Rev. B 98, 125308 (2018)

    Article  ADS  Google Scholar 

  16. J.Z. Zhang, J.Z. Ma, J. Phys.: Condens. Matter 31, 105702 (2019)

    ADS  Google Scholar 

  17. B. Scharf, D.V. Tuan, I. Žutić, H. Dery, J. Phys.: Cond. Matter 31, 203001 (2019)

    ADS  Google Scholar 

  18. H.C. Kamban, T.G. Pedersen, Sci. Rep. 10, 5537 (2020)

    Article  ADS  Google Scholar 

  19. L.S.R. Cavalcante, A. Chaves, B.V. Duppen, F.M. Peeters, D.R. Reichman, Phys. Rev. B 97 (2018)

  20. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  21. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  22. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  23. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  ADS  Google Scholar 

  24. U. Wurstbauer, B. Miller, E. Parzinger, A.W. Holleitner, J. Phys. D: Appl. Phys. 50, 173001 (2017)

    Article  ADS  Google Scholar 

  25. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, T.F. Heinz, Phys. Rev. Lett. 113, 076802 (2014)

    Article  ADS  Google Scholar 

  26. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Nat. Mat. 12, 207 (2012)

    Article  Google Scholar 

  27. K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. Shan, Phys. Rev. Lett. 113 (2014)

  28. D. Xiao, G.B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108 (2012)

  29. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)

    Article  Google Scholar 

  30. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74 (2012)

    Article  Google Scholar 

  31. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74 (2011)

    Article  Google Scholar 

  32. A. Pospischil, M.M. Furchi, T. Mueller, Nat. Nano. 9, 257 (2014)

    Article  Google Scholar 

  33. M.M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, T. Mueller, Nano Lett. 14, 4785 (2014)

    Article  ADS  Google Scholar 

  34. M. Amani, D.H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S.R. Madhvapathy, R. Addou, S. KC, M. Dubey et al., Science 350, 1065 (2015)

    Article  ADS  Google Scholar 

  35. X.X. Zhang, T. Cao, Z. Lu, Y.C. Lin, F. Zhang, Y. Wang, Z. Li, J.C. Hone, J.A. Robinson, D. Smirnov et al., Nat. Nano. 12, 883 (2017)

    Article  Google Scholar 

  36. M.R. Molas, C. Faugeras, A.O. Slobodeniuk, K. Nogajewski, M. Bartos, D.M. Basko, M. Potemski, 2D Mat. 4, 021003 (2017)

    Article  Google Scholar 

  37. B. Scharf, T. Frank, M. Gmitra, J. Fabian, I. Žutić, V. Perebeinos, Phys. Rev. B 94, 245434 (2016)

    Article  ADS  Google Scholar 

  38. S. Haastrup, S. Latini, K. Bolotin, K.S. Thygesen, Phys. Rev. B 94, 041401 (2016)

    Article  ADS  Google Scholar 

  39. M. Massicotte, F. Vialla, P. Schmidt, M.B. Lundeberg, S. Latini, S. Haastrup, M. Danovich, D. Davydovskaya, K. Watanabe, T. Taniguchi et al., Nat. Commun. 9, 1633 (2018)

    Article  ADS  Google Scholar 

  40. A.F. Rigosi, H.M. Hill, Y. Li, A. Chernikov, T.F. Heinz, Nano Lett. 15, 5033 (2015)

    Article  ADS  Google Scholar 

  41. T.C. Berkelbach, D.R. Reichman, Annu. Rev. Condens. Matter Phys. 9, 379 (2018)

    Article  ADS  Google Scholar 

  42. N. Aquino, G. Campoy, A. Flores-Riveros, Int. J. Quant. Chem. 103, 267 (2005)

    Article  ADS  Google Scholar 

  43. F. Grasselli, Am. J. Phys. 85, 834 (2017)

    Article  ADS  Google Scholar 

  44. M. Iñarrea, V. Lanchares, J.F. Palacián, A.I. Pascual, J.P. Salas, P. Yanguas, Commun. Nonlinear Sci. Numer. Simul. 68, 94 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  45. V. Shahnazaryan, I. Iorsh, I.A. Shelykh, O. Kyriienko, Phys. Rev. B 96, 115409 (2017)

    Article  ADS  Google Scholar 

  46. S. Aas, C. Bulutay, Opt. Express 26, 28672 (2018)

    Article  ADS  Google Scholar 

  47. C. Jin, E.C. Regan, A. Yan, M.I.B. Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi et al., Nature 567, 76 (2019)

    Article  ADS  Google Scholar 

  48. A. Castellanos-Gomez, J. Phys. Chem. Lett. 6, 4280 (2015)

    Article  Google Scholar 

  49. M.Y. Li, Y. Shi, C.C. Cheng, L.S. Lu, Y.C. Lin, H.L. Tang, M.L. Tsai, C.W. Chu, K.H. Wei, J.H. He et al., Science 349, 524 (2015)

    Article  ADS  Google Scholar 

  50. A.S. Pawbake, M.S. Pawar, S.R. Jadkar, D.J. Late, Nanoscale 8, 3008 (2016)

    Article  ADS  Google Scholar 

  51. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Mater. Today 20, 116 (2017)

    Article  Google Scholar 

  52. P.V. Ratnikov, Phys. Rev. B 102, 085303 (2020)

    Article  ADS  Google Scholar 

  53. A.J. Chaves, R.M. Ribeiro, T. Frederico, N.M.R. Peres, 2D Mat. 4, 025086 (2017)

    Article  Google Scholar 

  54. J. Have, N.M.R. Peres, T.G. Pedersen, Phys. Rev. B 100, 045411 (2019)

    Article  ADS  Google Scholar 

  55. J.C.G. Henriques, G. Catarina, A.T. Costa, J. Fernández-Rossier, N.M.R. Peres, Phys. Rev. B 101, 045408 (2020)

    Article  ADS  Google Scholar 

  56. J.C.G. Henriques, G.B. Ventura, C.D.M. Fernandes, N.M.R. Peres, J. Phys.: Condens. Matter 32, 025304 (2020)

    ADS  Google Scholar 

  57. M.R. Molas, A.O. Slobodeniuk, K. Nogajewski, M. Bartos, L. Bala, A. Babiński, K. Watanabe, T. Taniguchi, C. Faugeras, M. Potemski, Phys. Rev. Lett. 123, 136801 (2019)

    Article  ADS  Google Scholar 

  58. M. Van der Donck, M. Zarenia, F.M. Peeters, Phys. Rev. B 97, 195408 (2018)

    Article  ADS  Google Scholar 

  59. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez et al., 2D Mater. 1, 025001 (2014)

    Article  Google Scholar 

  60. J.Z. Zhang, J.Z. Ma, J. Phys.: Condens. Matter 31, 105702 (2019)

    ADS  Google Scholar 

  61. J. Stark, Ann. Phys. 348, 965 (1914)

    Article  Google Scholar 

  62. B. Simon, Phys. Lett. A 71, 211 (1979)

    Article  ADS  Google Scholar 

  63. C.W. McCurdy, C.K. Stroud, M.K. Wisinski, Phys. Rev. A 43, 5980 (1991)

    Article  ADS  Google Scholar 

  64. X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Nat. Nano. 9, 682 (2014)

    Article  Google Scholar 

  65. L. Meckbach, T. Stroucken, S.W. Koch, Phys. Rev. B 97, 035425 (2018)

    Article  ADS  Google Scholar 

  66. R. Kumar, I. Verzhbitskiy, F. Giustiniano, T.P.H. Sidiropoulos, R.F. Oulton, G. Eda, 2D Mater. 5, 041003 (2018)

    Article  Google Scholar 

  67. S. Ovesen, S. Brem, C. Linderälv, M. Kuisma, T. Korn, P. Erhart, M. Selig, E. Malic, Commun. Phys. 2, 23 (2019)

    Article  Google Scholar 

  68. H.C. Kamban, T.G. Pedersen, Phys. Rev. B 100, 045307 (2019)

    Article  ADS  Google Scholar 

  69. B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, U. Wurstbauer, Nano Lett. 17, 5229 (2017)

    Article  ADS  Google Scholar 

  70. F. Vialla, M. Danovich, D.A. Ruiz-Tijerina, M. Massicotte, P. Schmidt, T. Taniguchi, K. Watanabe, R.J. Hunt, M. Szyniszewski, N.D. Drummond et al., 2D Mater. 6, 035032 (2019)

    Article  Google Scholar 

  71. H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, F. Rana, Phys. Rev. B 93, 045407 (2016)

    Article  ADS  Google Scholar 

  72. G. Moody, C.K. Dass, K. Hao, C.H. Chen, L.J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser et al., Nat. Commun. 6, 8315 (2015)

    Article  ADS  Google Scholar 

  73. B. Han, C. Robert, E. Courtade, M. Manca, S. Shree, T. Amand, P. Renucci, T. Taniguchi, K. Watanabe, X. Marie et al., Phys. Rev. X 8, 031073 (2018)

    Google Scholar 

  74. E. Courtade, M. Semina, M. Manca, M.M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre et al., Phys. Rev. B 96, 085302 (2017)

    Article  ADS  Google Scholar 

  75. C. Zhang, H. Wang, W. Chan, C. Manolatou, F. Rana, Phys. Rev. B 89, 205436 (2014)

    Article  ADS  Google Scholar 

  76. M. Van der Donck, M. Zarenia, F.M. Peeters, Phys. Rev. B 96, 035131 (2017)

    Article  ADS  Google Scholar 

  77. M. Van der Donck, F.M. Peeters, Phys. Rev. B 98, 115104 (2018)

    Article  ADS  Google Scholar 

  78. C. Ruppert, O.B. Aslan, T.F. Heinz, 14, 6231 (2014)

    Google Scholar 

  79. M.A. Semina, Phys. Sol. Stat. 61, 2218 (2019)

    Article  ADS  Google Scholar 

  80. J. Planelles, Theor. Chem. Accounts 136, 81 (2017)

    Article  Google Scholar 

  81. M. Van der Donck, F.M. Peeters, Ph.D. thesis, Universiteit Antwerpen, 2019

  82. V. Shuvayev, L. Deych, A.A. Lisyansky, I.V. Ponomarev, Self-Consistent Approach for Calculations of Exciton Binding Energy in Quantum Wells, inMarch Meeting of the APS, Los Angeles (2005)

  83. T.G. Pedersen, Phys. Rev. B 94, 125424 (2016)

    Article  ADS  Google Scholar 

  84. N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P. Bigenwald, A.V. Kavokin, S. Höfling, C. Schneider, Appl. Phys. Lett. 112, 031107 (2018)

    Article  ADS  Google Scholar 

  85. R. Bhat, J. Sound Vibrat. 114, 65 (1987)

    Article  ADS  Google Scholar 

  86. K.M. Liew, K.Y. Lam, J. Vibrat. Acoustics 113, 182 (1991)

    Google Scholar 

  87. M.F.C.M. Quintela, J.M.B.L. dos Santos, J. Phys.: Condens. Matter 33, 035901 (2020)

    Google Scholar 

  88. J.W. Brown, H.N. Spector, Phys. Rev. B 35, 3009 (1987)

    Article  ADS  Google Scholar 

  89. Y. ping Feng, H.N. Spector, Phys. Rev. B 48, 1963 (1993)

    Article  ADS  Google Scholar 

  90. O. Akimoto, E. Hanamura, J. Phys. Soc. Jpn. 33, 1537 (1972)

    Article  ADS  Google Scholar 

  91. T.F. Rønnow, T.G. Pedersen, B. Partoens, Phys. Rev. B 85, 045412 (2012)

    Article  ADS  Google Scholar 

  92. R. Loudon, Am. J. Phys. 27, 649 (1959)

    Article  ADS  Google Scholar 

  93. J.C.G. Henriques, G.B. Ventura, C.D.M. Fernandes, N.M.R. Peres, J. Phys.: Condens. Matter 32, 025304 (2019)

    ADS  Google Scholar 

  94. P. Cudazzo, I.V. Tokatly, A. Rubio, Phys. Rev. B 84, 085406 (2011)

    Article  ADS  Google Scholar 

  95. S. Schmitt-Rink, C. Ell, J. Luminesc. 30, 585 (1985)

    Article  ADS  Google Scholar 

  96. H.C. Kamban, T.G. Pedersen, N.M.R. Peres, Phys. Rev. B 102, 115305 (2020)

    Article  ADS  Google Scholar 

  97. L. Xu, M. Yang, S.J. Wang, Y.P. Feng, Phys. Rev. B 95, 235434 (2017)

    Article  ADS  Google Scholar 

  98. J. Zhou, W.Y. Shan, W. Yao, D. Xiao, Phys. Rev. Lett. 115, 166803 (2015)

    Article  ADS  Google Scholar 

  99. C.K. Yong, M.I.B. Utama, C.S. Ong, T. Cao, E.C. Regan, J. Horng, Y. Shen, H. Cai, K. Watanabe, T. Taniguchi et al., Nat. Mater. 18, 1065 (2019)

    Article  ADS  Google Scholar 

  100. G.H. Wannier, Phys. Rev. 52, 191 (1937)

    Article  ADS  Google Scholar 

  101. N.F. Mott, Proc. Phys. Soc. Sec. A 62, 416 (1949)

    Article  ADS  Google Scholar 

  102. J. Have, G. Catarina, T.G. Pedersen, N.M.R. Peres, Phys. Rev. B 99, 035416 (2019)

    Article  ADS  Google Scholar 

  103. Y.W. Chang, D.R. Reichman, Phys. Rev. B 99, 125421 (2019)

    Article  ADS  Google Scholar 

  104. D.V. Tuan, B. Scharf, Z. Wang, J. Shan, K.F. Mak, I. Žutić, H. Dery, Phys. Rev. B 99, 085301 (2019)

    Article  ADS  Google Scholar 

  105. G.D. Mahan, Many-particle physics, Physics of solids and liquids, 2nd edn. (Plenum Press, 1990)

  106. S.W.K. Hartmut Haug,Quantum Theory of Optical and Electronic Properties of Semiconductors, 4th edn. (World Scientific Publishing Company, 2004)

  107. H. Ouerdane, J. Appl. Phys. 110, 074905 (2011)

    Article  ADS  Google Scholar 

  108. N.M.R. Peres, R.M. Ribeiro, A.H.C. Neto, Phys. Rev. Lett. 105, 055501 (2010)

    Article  ADS  Google Scholar 

  109. S. Glutsch,Excitons in Low-Dimensional Semiconductors (Springer, Berlin, Heidelberg, 2004)

  110. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)

    Article  ADS  Google Scholar 

  111. P. Cudazzo, I.V. Tokatly, A. Rubio, Phys. Rev. B 84, 085406 (2011)

    Article  ADS  Google Scholar 

  112. D.Y. Qiu, F.H. da Jornada, S.G. Louie, Phys. Rev. Lett. 111, 216805 (2013)

    Article  ADS  Google Scholar 

  113. O. Ávalos Ovando, D. Mastrogiuseppe, S.E. Ulloa, J. Phys.: Condens. Matter 31, 213001 (2019)

    ADS  Google Scholar 

  114. D.W. Snoke,Solid state physics: essential concepts (Addison-Wesley, San Francisco, 2009)

  115. J. Jackson,Classical electrodynamics (Wiley, New York, 1999)

  116. O.L. Berman, G. Gumbs, R.Y. Kezerashvili, Phys. Rev. B 96, 014505 (2017)

    Article  ADS  Google Scholar 

  117. A. Edery, P. Laporte, J. Phys. Comm. 2, 025024 (2018)

    Article  ADS  Google Scholar 

  118. B. Cohen-Tannoudji, F. Laloe, D. Claude, inQuantum Mechanics (Wiley, 2019), Vol. 3

  119. J. Horng, T. Stroucken, L. Zhang, E.Y. Paik, H. Deng, S.W. Koch, Phys. Rev. B 97, 241404(R) (2018)

    Article  ADS  Google Scholar 

  120. M. Rahaman, C. Wagner, A. Mukherjee, A. Lopez-Rivera, S. Gemming, D.R.T. Zahn, J. Phys.: Condens. Matter 31, 114001 (2019)

    ADS  Google Scholar 

  121. I. Kylänpää, H.P. Komsa, Phys. Rev. B 92, 205418 (2015)

    Article  ADS  Google Scholar 

  122. K.W. Lau, C. Cocchi, C. Draxl, Phys. Rev. Materials 3, 074001 (2019)

    Article  ADS  Google Scholar 

  123. G. Bassani, G. Parravicini, R. Ballinger, Electronic States and Optical Transitions in Solids, International Series of Monographs on solid state physics (Pergamon Press, New York, 1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno M. R. Peres.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins Quintela, M.F.C., Peres, N.M.R. A colloquium on the variational method applied to excitons in 2D materials. Eur. Phys. J. B 93, 222 (2020). https://doi.org/10.1140/epjb/e2020-10490-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10490-9

Keywords

Navigation