Skip to main content
Log in

Computer Engineering of the Surface Layer of Ground Al2O3–TiC Ceramics. Thermal Analysis

  • Published:
Refractories and Industrial Ceramics Aims and scope

We establish the regularities of thermal and stressed states of the surface layer of ground Al2O3–TiC ceramics subjected to the action of thermal loads. It is shown that the role of the thermal factor in the mechanism of fracture of this layer manifests itself in the formation of unfavorable microstructural stress concentrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. V. Kuzin, S. N. Grigoriev, and M. A. Volosova, “Computational engineering of the surface layer of ground Al2O3–TiC-ceramics. Force analysis,” Novye Ogreup., No. 7, 67 – 71 (2020).

  2. J. Zhao, X. Yuan, and Y. Zhou, “Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro-nano-composite ceramic tool,” Int. J. Refr. Met. Hard Mater., 28(3), 330 – 337 (2010).

    Article  CAS  Google Scholar 

  3. V. V. Kuzin, S. N. Grigoriev, and M. A. Volosova, “The role of the thermal factor in the wear mechanism of ceramic tools: Part 1. Macrolevel,” J. Friction Wear, 35(6), 505 – 510 (2014).

    Article  Google Scholar 

  4. V. V. Kuzin, S. N. Grigoriev, and M. A. Volosova, “The role of the thermal factor in the wear mechanism of ceramic tools. Part 2: Microlevel,” J. Friction Wear, 36(1), 40 – 44 (2015).

    Article  Google Scholar 

  5. M. Cheng, H. Liu, B. Zhao, et al., “Mechanical properties of two types of Al2O3/TiC ceramic cutting tool material at room and elevated temperatures,” Ceram. Int., 43(16), 13869 – 13874 (2017).

    Article  CAS  Google Scholar 

  6. Z. Yin, C. Huang, B. Zou, et al., “High temperature mechanical properties of Al2O3/TiC micro-nano-composite ceramic tool materials,” Ceram. Int., 39(8), 8877 – 8883 (2013).

    Article  CAS  Google Scholar 

  7. S. N. Grigoriev and V. V. Kuzin, “Prospects for tools with ceramic cutting plates in modern metal working,” Glass Ceram., 68(7/8), 253 – 257 (2011).

    Article  Google Scholar 

  8. Z. Yin, J. Yuan, C. Huang, et al., “Friction and wear behaviors of Al2O3/TiC micro-nano-composite ceramic sliding against metals and hard materials,” Ceram. Int., 42(1), 1982 – 1989 (2016).

    Article  CAS  Google Scholar 

  9. V. V. Kuzin, “Effective use of high density ceramic for manufacture of cutting and working tools,” Refract. Ind. Ceram., 51(6), 421 – 426 (2010).

    Article  Google Scholar 

  10. V. V. Kuzin and S. Yu. Fedorov, “Correlation of diamond grinding regimes with Al2O3–TiC-ceramic surface condition,” Refract. Ind. Ceram. 57(5), 520 – 525 (2017).

    Article  CAS  Google Scholar 

  11. J. Li and L.-P. Ma, “Influence of cobalt phase on mechanical properties and thermal shock performance of Al2O3–TiC composites,” Ceram. Int., 31(7), 945 – 951 (2005).

    Article  CAS  Google Scholar 

  12. V. V. Kuzin, S. Yu. Fedorov, and S. N. Grigoriev, “Features of Al2O3–TiC ceramic specimen edge morphology formation during diamond grinding,” Refract. Ind. Ceram., 58(3), 319 – 323 (2017).

    Article  CAS  Google Scholar 

  13. V. V. Kuzin, S. N. Grigoriev, and M. A. Volosova, “Thermal and deformation processes occurring within a component surface layer made from oxide-carbide ceramic in contact with a nickel alloy component during heating loads,” Refract. Ind. Ceram., 55(2), 157 – 163 (2014).

    Article  CAS  Google Scholar 

  14. S. N. Grigoriev, V. V. Kuzin, A. D. Batako, et al., “Influence of loads on the stress-strain state of aluminum-oxide ceramic cutting plates,” Russ. Eng. Res., 32(5), 473 – 477 (2012).

    Article  Google Scholar 

  15. V. V. Kuzin, S. N. Grigoriev, and V. N. Ermolin, “Stress inhomogeneity in a ceramic surface layer under the action of an external load. Part 2. Effect of thermal loading,” Refract. Ind. Ceram., 54(6), 497 – 501 (2014).

    Article  CAS  Google Scholar 

  16. V. V. Kuzin, S. N. Grigoriev, and M. A. Volosova, “Effect of a TiC coating on the stress-strain state of a plate of a high-density nitride ceramic under nonsteady thermoelastic conditions,” Refract. Ind. Ceram., 54(5), 376 – 380 (2014).

    Article  CAS  Google Scholar 

  17. M. A. Volosova, S. N. Grigoriev, and V. V. Kuzin, “Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 4. Action of heat flow,” Refract. Ind. Ceram., 56(1), 91 – 96 (2015).

    Article  CAS  Google Scholar 

  18. D. Wang, C. Xue, Y. Cao, et al., “Microstructure design and preparation of Al2O3/TiC/TiN micro-nano-composite ceramic tool materials based on properties prediction with finite element method,” Ceram. Int., 44(51), 5093 – 5101 (2018).

    Article  CAS  Google Scholar 

  19. V. V. Kuzin, S. N. Grigoriev, M. A. Volosova, et al., “Designing of details taking into account degradation of structural ceramics at exploitation,” Appl. Mech. Mater., 752/753, 268 – 271 (2015).

  20. C. Xu, G. Xiao, Y. Zhang, et al., “Finite-element design and fabrication of Al2O3/TiC/CaF2 gradient self-lubricating ceramic tool material,” Ceram. Int., 40(7), Part B, 10971 – 10983 (2014).

    Article  CAS  Google Scholar 

  21. X. Shen, Y. Li, U. A. Putchkov, et al., “Finite-element analysis of residual stresses in Al2O3–TiC/W18Cr4V diffusion bonded joints,” Comput. Mater. Sci., 45(2), 407 – 410 (2009).

    Article  CAS  Google Scholar 

  22. V. V. Kuzin, S. N. Grigoriev, and M. A. Volosova, “Foundations of computer engineering of the surface layer of ground ceramics,” Novye Ogneup., No. 6, 64 – 69 (2020).

    Article  Google Scholar 

  23. V. Kuzin and S. Grigoriev, “Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material,” Appl. Mech. Mater., 486, 32 – 35 (2014).

    Article  Google Scholar 

Download references

The present work was financially supported within the framework of the State Task of the Ministry of Science and Higher Education of Russian Federation, Project No. 0707-2020-0025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuzin.

Additional information

Translated from Novye Ogneupory, No. 8, pp. 53 – 58, August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzin, V.V., Grigoriev, S.N. & Volosova, M.A. Computer Engineering of the Surface Layer of Ground Al2O3–TiC Ceramics. Thermal Analysis. Refract Ind Ceram 61, 418–423 (2020). https://doi.org/10.1007/s11148-020-00496-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00496-y

Keywords

Navigation