Skip to main content
Log in

Occurrence and Stability of Allanite and Monazite in the Greater Himalayan Sequence, Dhauliganga Valley, Garhwal Himalaya

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

The occurrence and relative stability of metamorphic allanite and monazite in metapelites of the Greater Himalayan Sequence (GHS) in the Dhauliganga valley, Garhwal Himalaya have been studied. The GHS is marked by kyanite grade metamorphism in the lower and middle structural levels and sillimanite grade metamorphism in the upper structural level. The occurrence of allanite is restricted to the lower structural level, while monazite occurs in the middle and upper structural levels. The allanite-out reaction occurred at ∼660 °C and 9.5 kbar. Monazite shows widely varying ThO2 content which can be explained mostly by brabantite substitution. The rocks of the GHS of the Dhauliganga valley display inverted metamorphic sequence and the allanite-out reaction is the result of prograde metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayers, J.C., Miller, C., Gorisch, B. and Milleman, J. (1999) Textural development of monazite during high-grade metamorphism: Hydrothermal growth kinetics with implication for U, Th-Pb geochronology. Amer. Mineral. v.84, pp.1766–1780.

    Article  Google Scholar 

  • Budzyn, B., Harlov, D.E., Kozub-Budzyn, G.A. and Majka, J. (2017) Experimental constraints on the relative stabilities of the two systems monazite-(Ce) - allanite-(Ce) - fluorapatite and xenotime-(Y) - (Y,HREE)-rich epidote - (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 MPa and 450–570°C. Mineral. Petrol. v.111, pp.183–217.

    Article  Google Scholar 

  • Catlos, E.J., Gilley, L.D. and Harrison, T.M. (2002) Interpretation of monazite ages obtained via in situ analysis. Chem. Geol., v.188, pp.193–215.

    Article  Google Scholar 

  • Cawood, P.A., Johnson, M.R.W. and Nemchin, A.A. (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett., v.255, pp.70–84.

    Article  Google Scholar 

  • Corrie, S.L. and Kohn, M.J. (2008) Trace-element distributions in silicates during prograde metamorphic reactions: implications for monazite formation. Jour. Metamorph. Geol., v.26, pp.451–464.

    Article  Google Scholar 

  • DeWolf, C.P., Belshaw, N.S. and O’Nions, R.K. (1993) A metamorphic history from micron-scale 207Pb/206Pb chronometry of Archean monazite. Earth Planet. Sci. Lett., v.120, pp. 207–220.

    Article  Google Scholar 

  • Engi, M. (2017) Petrochronology based on REE-minerals: monazite, allanite, xenotime, apatite. Rev. Mineral. Geochem., v.83, pp.365–418.

    Article  Google Scholar 

  • Finger, F., Krenn, E., Schulz, B., Harlov, D. and Schiller, D. (2016) “Satellite monazites” in polymetamorphic basement rocks of the Alps: Their origin and petrological significance. Amer. Mineral., v.101, pp.1094–1103.

    Article  Google Scholar 

  • Gasser, D., Bruand, E., Rubatto, D. and Stüwe, K. (2012) The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: an example from the Chugach Metamorphic Complex, southern Alaska. Lithos, v.134, pp.108–122.

    Article  Google Scholar 

  • Giere, R. and Sorensen, S. (2004) Allanite and other REE-Rich epidote-group minerals. Rev. Mineral. Geochem., v.56, pp.431–493.

    Article  Google Scholar 

  • Gururajan, N.S. and Choudhuri, B.K. (1999) Ductile thrusting, metamorphism and normal faulting in Dhauliganga valley, Garhwal Himalaya. Him. Geol., v.20, pp.19–29.

    Google Scholar 

  • Hodges, K.V. and Silverberg, D.S. (1988) Thermal evolution of the Greater Himalaya, Garhwal, India. Tectonics, v.7, pp.583–600.

    Article  Google Scholar 

  • Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.O. and Spandler, C. (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610°C. Jour. Metamorph. Geol., v.26, pp.509–526.

    Article  Google Scholar 

  • Kohn, M.J. and Malloy, M.A. (2004) Formation of monazite via prograde metamorphic reactions among common silicates; implications for age determinations. Geochim. Cosmochim. Acta, v.68, pp.101–113.

    Article  Google Scholar 

  • Kretz, R. (1983) Symbols of rock-forming minerals. Am. Mineral., v.68, pp.277–279.

    Google Scholar 

  • Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalyses. Microchimica Acta, v.114, pp.363–376.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.S. (1995) The Composition of the Earth. Chem. Geol., v.120, pp.223–253.

    Article  Google Scholar 

  • Metcalfe, R.P. (1993) Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya. In: Treloar, P.J., Searle, M.P. (Eds) Himalayan Tectonics. Geol. Soc. London Spec. Publ. v.74, pp.485–509.

    Article  Google Scholar 

  • Mukherjee, P.K., Jain, A.K., Singhal, S., Singha, N.B., Singh, S., Kumud, K., Seth, P. and Patel, R.C. (2019) U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications. Gondwana Res., v.75, pp.282–297.

    Article  Google Scholar 

  • Pandey, M., Pant, N.C. and Kumar, S. (2013) Criteria to distinguish between regional and contact zone monazite - a case study from Proterozoic North Delhi Fold Belt (NDFB), India. Episodes, v.36, pp.275–289.

    Article  Google Scholar 

  • Paul, S.K. (1998) Geology and tectonics of the Central Crystallines of northeastern Kumaun Himalaya, India. Jour. Nepal Geol. Soc., v.18, pp.151–167.

    Google Scholar 

  • Pouchon, J.L. and Pichoir, F. (1984) A new model for the quantitative X-ray analysis, Part-I. Application to the analysis of homogeneous samples. La Rech. Aeros., v.3, pp.13–38.

    Google Scholar 

  • Powell, R. and Holland, T. (1994) Optimal geothermometry and geobarometry. Amer. Mineral., v.79, pp.120–133.

    Google Scholar 

  • Rasmussen, B., Muhling, J.R., Fletcher, I.R. and Wingate, M.T.D. (2006) In situ SHRIMP U-Pb dating of monazite integrated with petrology and textures: does bulk composition control whether monazite forms in low-Ca pelitic rocks during amphibolite facies metamorphism? Geochim. Cosmochim. Acta, v.70, pp.3040–3058.

    Article  Google Scholar 

  • Sachan, H.K., Kohn, M.J., Saxena, A. and Corrie, S.L. (2010) The Malari leucogranite, Garhwal Himalaya, northern India: Chemistry, age, and tectonic implication. Geol. Soc. Amer. Bull., v.122, pp.1865–1876. DOI::https://doi.org/10.1130/B30153.1.

    Article  Google Scholar 

  • Spear, F.S. (2010) Monazite-allanite phase relations in metapelites. Chem. Geol., v.279, pp.55–62.

    Article  Google Scholar 

  • Spear, F.S. and Pyle, J.M. (2002) Apatite, monazite and xenotime in metamorphic rocks. Rev. Mineral. Geochem., v.48, pp.293–335.

    Article  Google Scholar 

  • Spencer, C.J., Harris, R.A. and Dorais, M.J. (2012) The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India. Tectonics, v.31, TC1007, doi:https://doi.org/10.1029/2010TC002853.

    Article  Google Scholar 

  • Thakur, S.S., Madhavan, K., Patel, S.C., Rameshwar Rao, D., Singh, A.K., Pandey, S. and Nandini, P. (2018) Yttrium-zoning in garnet and stability of allanite in metapelites from the Main Central Thrust Zone and adjacent higher Himalayan crystallines along the Alaknanda Valley, NW Himalaya. Lithos, v.320–321, pp.1–19.

    Article  Google Scholar 

  • Thakur, S.S., Patel, S.C. and Singh, A.K. (2015) A P-T pseudosection modelling approach to understand metamorphic evolution of the Main Central Thrust Zone in the Alaknanda valley, NW Himalaya. Contrib. Mineral. Petrol., v.170(2), pp.1–26.

    Google Scholar 

  • Valdiya, K.S., Paul, S.K., Chandra, T., Bhakuni, S.S. and Upadhyaya, R.C. (1999) Tectonic and lithological characterization of Himadri (Greater Himalaya) between Kali and Yamuna rivers, Central Himalaya. Himalayan Geol., v.20, pp.1–17.

    Google Scholar 

  • Virdi, N.S. (1986) Lithostratigraphy and structure of Central Crystallines in the Alaknanda and Dhauliganga valley of Garhwal U.P. In: Saklani, P.S. (Ed.), Himalayan thrusts and associated rocks. Curr. Trends Geol., v.10, pp.155–166.

    Google Scholar 

  • Williams, M., Jercinovic, M.J. and Hetherington, C. (2007) Microprobe Monazite Geochronology: Understanding geologic processes by integrating composition and chronology. Ann. Rev. Earth Planet. Sci., v.35, pp.137–175.

    Article  Google Scholar 

  • Wing, B., Ferry, J. and Harrison, T.M. (2003) Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contrib. Mineral. Petrol., v.145, pp.228–250.

    Article  Google Scholar 

  • Yakymchuk, C. and Godin, L. (2012) Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences: an example from far-northwest Nepal. Jour. Metamorph. Geol., v.30, pp.513–535.

    Article  Google Scholar 

  • Yang, P. and Pattison, D. (2006) Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota. Lithos, v.88, pp.233–253.

    Article  Google Scholar 

  • Zhu, X.K. and O’Nions, R.K. (1999a) Monazite chemical composition; some implications for monazite geochronology. Contrib. Mineral. Petrol., v.137, pp.351–363.

    Article  Google Scholar 

  • Zhu, X.K. and O’Nions, R.K. (1999b) Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain. Earth Planet. Sci. Lett., v.171, pp.209–220.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kalachanda Sain, Director, Wadia Institute of Himalayan Geology, Dehradun (India) for providing research facility and giving kind permission to publish the research work (WIHG/0065). Dr. B. Mahabaleshwar, Editor-in-Chief, Journal of Geological Society of India, is thanked for editorial handling. Critical comments from an anonymous reviewer are greatly appreciated. The SERB, Govt. of India is thanked for funding the EPMA National Facility at IIT Bombay (grant no. IR/S4/ESF-16/2009). C. Chaurasia acknowledges UGC, New Delhi for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, C., Madhavan, K., Thakur, S.S. et al. Occurrence and Stability of Allanite and Monazite in the Greater Himalayan Sequence, Dhauliganga Valley, Garhwal Himalaya. J Geol Soc India 96, 557–564 (2020). https://doi.org/10.1007/s12594-020-1602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-020-1602-1

Navigation