Skip to main content
Log in

Garnet-Hornblende Geothermometer: A Comparative Study

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

The abundance of garnet — hornblende pair in a wide range of rocks primarily from upper green schist to granulite facies has made it one of the most widely used pairs for estimation of temperature at which once rocks equilibrated. Several models of garnet- hornblende thermometer have been formulated by a number of researchers in last four decades. In this contribution, four thermometers: Graham & Powell (1984); Perchuk et al., (1985); Powell, (1985) and Ravna, (2000) formulated since 1984 have been applied. 79 sample data (32 granulites facies, 37 amphibolite facies, 1 greenschist facies, 6 UHP/eclogite facies, 1 UHT and 2 migmatites) from the global literature were collected and processed through the “Gt-Hbl.EXE” software. Based on the present study, the best among all the four models have been identified where the regression bearing on inverse of temperature verses LnKD of each model as well as relation of distribution coefficient on composition were compared. It is concluded that Perchuk et al., (1985) is the most valid and reliable thermometers for a wide range of rock types such as greenschist to eclogite facies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, J.C., Boettcher, A.L. and Marland, G. (1975). Amphiboles in andesite and basalt: I. Stability as a function of P-T-fO. Amer. Min., v.60, pp.1069–1085.

    Google Scholar 

  • Allen, J.C. and Boettcher, A.L. (1978) Amphiboles in andesite and basalt: 11. Stability as a function of P-T- fH2, O. Amer. Min., v.63, pp.1074–1087.

    Google Scholar 

  • Allen, J.C. and Boettcher, A.L. (1983) The stability of amphibole in andesite and basalt at high pressures. Amer. Min., v.68, pp.307–314.

    Google Scholar 

  • Bohlen, S.R. (1987) Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Jour. Geol., v.95(5), pp.617–632.

    Article  Google Scholar 

  • Carroll, M.R. and Wyllie, P.J. (1989) Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb; implications for assimilation and differentiation processes near the crust-mantle boundary. Jour. Petrol., v.30(6), pp.1351–1382.

    Article  Google Scholar 

  • Dale, J., Holland, T. and Powell, R. (2000). Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib. Mineral. Petrol., v. 140(3), pp.353–362.

    Article  Google Scholar 

  • Dobretsov, N.L., Sobolev, V.S., Sobolev, N.V. and Khlestov, V.V. (1975) The facies series of regional metamorphism at high pressures In: Sobolev, V.S. (Ed.), Australian National University, Dept of Geol. Publ. 266, Canberra.

  • Elmer, F.L., White, R.W. and Powell, R. (2006) Devolatilization of metabasic rocks during greenschist-amphibolite facies metamorphism. Jour Metamorp. Geol., v.24(6), pp.497–513.

    Article  Google Scholar 

  • Ellis, D.J. and Green, D.H. (1979) An experimental study of the effect of Ca upon garnet clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., v.71, pp.13–22.

    Article  Google Scholar 

  • Ernst, W.G. and Liu, J. (1998) Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB; a semiquantitative thermobarometer. Amer. Mineral., v.83(9–10), pp.952–969.

    Article  Google Scholar 

  • Essene, E.J., Hensen, B.J. and Green, D.H. (1970) Experimental study of amphibolite and eclogite stability. Phys. Earth Planet. Interiors, v.3, pp.378–384.

    Article  Google Scholar 

  • Ferry, J.T. and Spear, F.S. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib. Mineral. Petrol., v.66(2), pp.113–117.

    Article  Google Scholar 

  • Frost, M.J. (1962) Metamorphic grade and iron-magnesium distribution between co-existing garnet-biotite and garnet-hornblende. Geol. Magz., v.99(5), pp.427–438.

    Article  Google Scholar 

  • Ghent, E.D. and Stout, M.Z. (1986) Garnet-Hornblende Thermometry, Activity, and the Minimum Pressure Limits of Metamorphism for Garnet Amphibolites. Jour. Geol., v.94(5), pp.736–743.

    Article  Google Scholar 

  • Graham, C.M. and Powell, R. (1984) A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California. Jour. Metamorp. Geol., v.2(1), pp.13–31.

    Article  Google Scholar 

  • Green, D.H. and Ringwood, A.E. (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geoch. Et Cosmo Acta, v.31(5), pp.767–833.

    Article  Google Scholar 

  • Green, T.H. (1972) Crystallization of calc-alkaline andesite under controlled high-pressure hydrous conditions. Contrib. Mineral. Petrol., v.34(2), pp.150–166.

    Article  Google Scholar 

  • Harley, S.L. (1989) The origins of granulites: a metamorphic perspective. Geol. Magz., v.126(3), pp.215–247

    Article  Google Scholar 

  • Hokada, T. (2001) Feldspar thermometry in ultrahigh-temperature metamorphic rocks: Evidence of crustal metamorphism attaining∼1100°C in the Archean Napier Complex, East Antarctica. Amer. Mineral., v.86(7–8), pp.932–938.

    Article  Google Scholar 

  • Kaneko, Y. and Miyano, T. (2004) Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos, v.73(3–4), pp.255–269.

    Article  Google Scholar 

  • Klemd, R. and Bröcker, M. (1999) Fluid influence on mineral reactions in ultrahigh-pressure granulites: a case study in the Œnie¿nik Mts. (West Sudetes, Poland). Contrib. Miner. Petrol, v.136(4), pp.358–373.

    Article  Google Scholar 

  • Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M. C., Grice, J.D., … and Linthout, K. (1997) Report. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Mineralogical Magz., v.61(2), pp.295–321.

    Google Scholar 

  • Patiñodouce, A.E. and Beard, J.S. (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Jour Petrol., v.36(3), pp.707–738.

    Article  Google Scholar 

  • Perchuk, L.L. (1966) The temperature dependence of the Ca distribution coefficient for co-existing amphi- boles and plagioclases. Dokl. Akad. Nauk SSSR, v.169. pp.1436–1438 (in Russian).

    Google Scholar 

  • Perchuk, L.L. (1967) The analysis of thermodynamic conditions of mineral equilibria in the amphibole- garnet rocks. fx. Akad. Nauk SSSR, ser. Geol., pp.57–83 (in Russian).

  • Perchuk, L.L. (1969) The effect of temperature and pressure on the equilibrium of natural iron- magnesium minerals. Inr. Geol. Rev., v.11, pp.875–901.

    Article  Google Scholar 

  • Perchuk, L.L. (1970) Equilibria OJ Rock-Forming Minerals, 301 ‘Nauka’ Press, Moscow (in Russian).

    Google Scholar 

  • Perchuk, L.L., Aranovich, L.Y., Podlesskii, K.K., Lavrant’eva, I.V., Gerasimov, V.Y., Fed’Kin, V.V. and Berdnikov, N.V. (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. Jour. Metamorp. Geol., v.3(3), pp.265–310.

    Article  Google Scholar 

  • Perchuk, L.L. and Lavrent’yeva, I.V. (1990) Garnet-orthopyroxene and garnet-amphibole geothermobarometry: Experimental data and thermodynamics. Internat. Geol. Rev., v.32(5), pp.486–507.

    Article  Google Scholar 

  • Powell, R. (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet clinopyroxene geothermometer revisited. Jour. Metamorp. Geol., v.3(3), pp.231–243.

    Article  Google Scholar 

  • Ravna, E.K. (2000) Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe-Mg geothermometer. Lithos, v.53(3–4), pp.265–277.

    Article  Google Scholar 

  • Sen, C. and Dunn, T. (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Mineral. Petrol., v.117(4), pp.394–409.

    Article  Google Scholar 

  • Skjerlie, K.P. and Johnston, A.D. (1996) Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active continental margins. Jour. Petrol., v.37(3), pp.661–691.

    Article  Google Scholar 

  • Springer, W. and Seck, H.A. (1997) Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contrib. Mineral. Petrol., v.127(1–2), pp.30–45.

    Article  Google Scholar 

  • Thomas, H. (1994) Announcement” Software “MPET” for calculation of P-T and activities of common metamorphic minerals based on different models published in recent years. Jour. Geol. Soc. India, v.44, pp.34.

    Google Scholar 

  • Thomas, H., Rana, H. and Shahid, M. (2018) Garnet-orthopyroxene (GOPX) geothermometer: a comparative study. Arabian Jour. Geosci., v. 11(24), pp.771–780. DOI: https://doi.org/10.1007/s12517-018-4060-y

    Article  Google Scholar 

  • Thomas, H. and Rana, H. (2019) Valid garnet — biotite thermometer: A comparative study. Jour. Nepal Geol. Soc., v.58, pp.61–68. DOI: https://doi.org/10.3126/jngs.v58i0.24574

    Article  Google Scholar 

  • Thomas, H., Rana, H. and Anju, Mishra. (2020) Applicability of garnet — cordierite (GCRD) Geothermometer. Jour. Nepal Geol. Soc., v.60, pp.147–161. DOI:https://doi.org/10.3126/jngs.v60i0.31271

    Google Scholar 

  • Turner F.J. and Hill M. (1968) Metamorphic petrology, New York: McGraw Hill, pp.265–270

    Google Scholar 

  • Wells, P.R.A. (1979) P-T conditions in the Moines of the Central Highlands, Scotland: Jour. Geol. Soc. London, v.136, pp.663–671

    Article  Google Scholar 

  • Winter, J.D. (2013) Principles of igneous and metamorphic petrology. Pearson Education, pp.375–378.

Download references

Acknowledgements

The authors should like to put on record their candid thanks to the Head, Department of Applied Geology, Doctor Harisingh Gour Vishwavidyalaya, Sagar (M.P.) and the Department of Science and Technology, New Delhi, India for providing INSPIRE (JRF) facilities as including PURSE- Phase -II for conducting present research work. Thanks to anonymous reviewer for critical review for the improvement of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harel Thomas.

Additional information

Note

Supplementary data and figures associated with this article are separately included.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, H., Rana, H. Garnet-Hornblende Geothermometer: A Comparative Study. J Geol Soc India 96, 591–596 (2020). https://doi.org/10.1007/s12594-020-1607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-020-1607-9

Navigation