Skip to main content
Log in

Theoretical Study of Endohedral Fullerenes M@C60 (M = Li, Na, or K) in Periodic Boundary Conditions

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Density functional calculations in periodic boundary conditions (PBCs) were performed to investigate the structural and electronic properties of neutral and charged M@C60 (M = Li, Na, or K). Minimal energy structures for each compounds were obtained. The structural analysis shows that the geometrical shape of the endohedral fullerenes is not perfectly spherical. In the periodic boundary conditions, only K and K+ retain their position in the center of fullerene while (Li) and (Na) are shifted from the center by 1.53 and 0.89 Å respectively. Mulliken population analysis indicated that the M-C60 bond may be purely ionic in the case of encapsulated K and Na, and partly ionic in the case of Li. For all compounds, the highest occupied cluster orbitals (HOCOs), the lowest unoccupied cluster orbitals (LUCOs) and the Gap energy were calculated and compared with literature.

The results obtained using PBCs approach show that the simulation model used in this study is indeed appropriate, it not only agrees very well with other theoretical methods but also is consistent with experimental results for C60. Furthermore, this model provide new Gap values for (M@C60) compound (M = Li, Na, or K) that can be used by the scientific community for deriving other electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Adams, G. D. Spyropoulos, M. Salvadoret, et al., Energy Environ. Sci. 8, 169 (2015).

    Article  Google Scholar 

  2. T. R. Andersen, H. F. Dam, B. Andreasen, et al., Sol. Energy Mater. Sol. Cells 120, 735 (2014).

    Article  Google Scholar 

  3. P. Kumar and S. Chand, Prog. Photovolt.: Res. Appl. 20, 377 (2011).

    Article  Google Scholar 

  4. M. S. Mauter and M. Elimelech, Environ. Sci. Technol. 42, 5843 (2008).

    Article  ADS  Google Scholar 

  5. K. G. Thomas, V. Biju, D. Guldi, et al., J. Phys. Chem. A 103, 10755 (1999).

    Article  Google Scholar 

  6. D. M. Guldi and M. Prato, Acc. Chem. Res. 33, 695 (2000).

    Article  Google Scholar 

  7. M. Fujitsuka, K. Matsumoto, O. Ito, et al., Res. Chem. Intermed. 27, 73 (2001).

    Article  Google Scholar 

  8. J. Liu, J. Li, X. Liu, et al., Org. Electron. 71, 36 (2019).

    Article  Google Scholar 

  9. H. S. Kim, H. J. Park, S. K. Lee, et al., Org. Electron. 71, 238 (2019).

    Article  Google Scholar 

  10. Y.-J. Huang, P.-J. Yen, H.-C. Wang, et al., Org. Electron. 72, 6 (2019).

    Article  ADS  Google Scholar 

  11. Z. Li, Q. Zhang, C. Zhang, et al., Org. Electron. 66, 70 (2019).

    Article  Google Scholar 

  12. Y.-H. Lou, L. Zhang, M.-F. Xu, et al., Org. Electron. 15, 299 (2014).

    Article  Google Scholar 

  13. M. B. Upama, N. K. Elumalai, M. A. Mahmud, et al., Org. Electron. 50, 279 (2017).

    Article  Google Scholar 

  14. A. Adini, M. Redlich, R. Tenne, et al., J. Mater. Chem. 21, 15121 (2011).

    Article  Google Scholar 

  15. L. Yang, L. Zhang, and T. J. Webster, Nanomedicine 6, 1231 (2011).

    Article  Google Scholar 

  16. W. Zhao, S. Li, H. Yao, et al., J. Am. Chem. Soc. 139, 7148 (2017).

    Article  Google Scholar 

  17. M. Zhang, J. Wang, F. Zhang, et al., Nano Energy 39, 571 (2017).

    Article  Google Scholar 

  18. T. Fukuda, K. Suzuki, N. Yoshimoto, et al., Org. Electron. 33, 32 (2016).

    Article  Google Scholar 

  19. F. C. Franco and A. A. B. Padama, Polymer 97, 55 (2016).

    Article  Google Scholar 

  20. N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 2295 (2007).

    Article  Google Scholar 

  21. N. Banerji, E. Gagnon, P.-Y. Morgantini, et al., J. Phys. Chem. C 116, 11456 (2012).

    Article  Google Scholar 

  22. N. Agnihotri, J. Photochem. Photobiol. Sci. 18, 18 (2014).

    Google Scholar 

  23. L. G. Kaake, J. J. Jasieniak, R. C. Bakus, et al., J. Am. Chem. Soc. 134, 19828 (2012).

    Article  Google Scholar 

  24. K. Sail, G. Bassou, M. H. Gafour, et al., J. Exp. Theor. Phys. 121, 1015 (2015).

    Article  ADS  Google Scholar 

  25. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  26. K. Ohkubo, Y. Kawashima, H. Sakai, et al., Chem. Commun. 49, 4474 (2013).

    Article  Google Scholar 

  27. H. Sakai, T. Kamimura, F. Tani, et al., J. Porphyr. Phthalocyan. 19, 242 (2015).

    Article  Google Scholar 

  28. C. M. Tran, H. Sakai, Y. Kawashima, et al., Org. Electron. 45, 234 (2017).

    Article  Google Scholar 

  29. H. Malani and D. Zhang, J. Phys. Chem. A 117, 3521 (2013).

    Article  Google Scholar 

  30. A. Valderrama and J. Guzman, J. Mol. Model. 20, 2130 (2014).

    Article  Google Scholar 

  31. M. Stener, G. Fronzoni, M. Venuti, et al., Chem. Phys. Lett. 309, 129 (1999).

    Article  ADS  Google Scholar 

  32. O. V. de Oliveira and A. da Silva Gonççalves, Comput. Chem. 2, 51 (2014).

    Article  Google Scholar 

  33. E. Brocławik and A. Eilmes, J. Chem. Phys. 108, 3498 (1998).

    Article  ADS  Google Scholar 

  34. B. I. Dunlap, J. L. Ballester, and P. P. Schmidt, J. Phys. Chem. 96, 9781 (1992).

    Article  Google Scholar 

  35. M. Pavanello, A. F. Jalbout, B. Trzaskowski, et al., Chem. Phys. Lett. 442, 339 (2007).

    Article  ADS  Google Scholar 

  36. J. Cioslowski and E. D. Fleischmann, J. Chem. Phys. 94, 3730 (1991).

    Article  ADS  Google Scholar 

  37. A. Ruiz, J. Hernández-Rojas, J. Breton, et al., J. Chem. Phys. 109, 3573 (1998).

    Article  ADS  Google Scholar 

  38. D. Tomanek and Y. Li, Chem. Phys. Lett. 243, 42 (1995).

    Article  ADS  Google Scholar 

  39. A. Hira and A. Ray, Phys. Rev. A 52, 141 (1995).

    Article  ADS  Google Scholar 

  40. H. Bai, H. Gao, W. Feng, et al., Nanomaterials 9, 630 (2019).

    Article  Google Scholar 

  41. T. A. Beu, J. Onoe, and A. Hida, Phys. Rev. B 72, 155416 (2005).

    Article  ADS  Google Scholar 

  42. S. Polad and S. Erkoc, J. Comput. Theor. Nanosci. 8, 674 (2011).

    Article  Google Scholar 

  43. C. Risko, M. D. McGehee, and J.-L. Bredas, Chem. Sci. 2, 1200 (2011).

    Article  Google Scholar 

  44. P. Hohenberg, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  45. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  Google Scholar 

  46. M. A. Marques and E. K. Gross, Ann. Rev. Phys. Chem. 55, 427 (2004).

    Article  ADS  Google Scholar 

  47. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  48. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  49. C. Lee, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  50. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  ADS  Google Scholar 

  51. T. M. Pappenfus, J. A. Schmidt, R. E. Koehn, et al., Macromolecules 44, 2354 (2011).

    Article  ADS  Google Scholar 

  52. S. S. Zade and M. Bendikov, Org. Lett. 8, 5243 (2006).

    Article  Google Scholar 

  53. S. S. Zade, N. Zamoshchik, and M. Bendikov, Acc. Chem. Res. 44, 14 (2011).

    Article  Google Scholar 

  54. J. P. Perdew, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  55. J. P. Perdew, Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  56. M. Frisch, G. Trucks, H. Schlegel, et al., Gaussian 09 D.01, Revision A1 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  57. R. Dennington, T. Keith, J. Millam, et al., GaussView, Version 5 (Semichem Inc., Shawnee Mission, KS, 2009).

    Google Scholar 

  58. A. Goel, J. B. Howard, and J. B. V. Sande, Carbon 42, 1907 (2004).

    Article  Google Scholar 

  59. M. Stefanou, H. J. Chandler, B. Mignolet, et al., Nanoscale 11, 2668 (2019).

    Article  Google Scholar 

  60. Y. Wang, D. Tomanek, and R. S. Ruoff, Chem. Phys. Lett. 208, 79 (1993).

    Article  ADS  Google Scholar 

  61. Y. Li and D. Tomanek, Chem. Phys. Lett. 221, 453 (1994).

    Article  ADS  Google Scholar 

  62. K. Komatsu, M. Murata, and Y. Murata, Science (Washington, DC, U. S.) 307, 238 (2005).

    Article  ADS  Google Scholar 

  63. S. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  ADS  Google Scholar 

  64. R. M. Richard, K. U. Lao, and J. M. Herbert, J. Phys. Chem. Lett. 4, 2674 (2013).

    Article  Google Scholar 

  65. H. Shinohara, Rep. Prog. Phys. 63, 843 (2000).

    Article  ADS  Google Scholar 

  66. A. A. Popov, S. Yang, and L. Dunsch, Chem. Rev. 113, 5989 (2013).

    Article  Google Scholar 

  67. R. Koeppe and N. Sariciftci, Photochem. Photobiol. Sci. 5, 1122 (2006).

    Article  Google Scholar 

  68. R. Kremer, T. Rabenau, W. Maser, et al., Appl. Phys. A 56, 211 (1993).

    Article  ADS  Google Scholar 

  69. F. A. Zaghmarzi, M. Zahedi, A. Mola, et al., Phys. E (Amsterdam, Neth.) 87, 51 (2017).

Download references

ACKNOWLEDGMENTS

This study was carried out within the framework of a collaboration between the L2MSM laboratory of Sidi Bel Abbes (Algeria) and the LEM3 laboratory of Metz (France). High Performance Computing resources were partially provided by the EXPLOR center hosted by the University of Lorraine. The authors gratefully acknowledge Dr. Muhannad Altarsha, Research Engineer in Scientific Computing at Lorraine University for helpful on Gaussian software.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. H. Gafour or N. Maloufi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gafour, M.H., Saïl, K., Bassou, G. et al. Theoretical Study of Endohedral Fullerenes M@C60 (M = Li, Na, or K) in Periodic Boundary Conditions. J. Exp. Theor. Phys. 131, 548–557 (2020). https://doi.org/10.1134/S1063776120090034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120090034

Navigation