Skip to main content
Log in

M5C4 Phases—New Family of Carbide Superstructures

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Monoclinic, orthorhombic, and tetragonal models are proposed for the M5C4 superstructures of nonstoichiometric cubic transition metal MCy carbides on the basis of symmetry analysis, the concept of a disorder–order transition channel, and a distribution function. Each of the disorder–order transition channels related to the formation of these model superstructures includes four superstructural vectors, which are the rays of non-Lifshitz stars {k1}, {k2}, or {k4}. The distribution functions of carbon C atoms over the sites of the M5C4 superstructures are calculated. The estimated probabilities of existence of vacancy pair configurations in the superstructures under study suggest that the tetragonal M5C4 superstructure is the most stable of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer, Berlin, 2001).

    Book  Google Scholar 

  2. A. I. Gusev, Nonstoichiometry and Chaos, Short-Range and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  3. A. A. Rempel and A. I. Gusev, Nonstoichiometry in Solids (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  4. A. I. Gusev, Phys. Usp. 57, 839 (2014).

    Article  ADS  Google Scholar 

  5. A. G. Khachaturyan, Theory of Structural Transformations in Solids (Wiley, New York, 1983).

    Google Scholar 

  6. Yu. M. Gufan, Structural Phase Transitions (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  7. Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry (Nauka, Moscow, 1984; Springer, Netherlands, 1990).

  8. D. M. Shtern and E. V. Kozlov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 25 (1985).

  9. A. I. Gusev, J. Exp. Theor. Phys. 109, 417 (2009).

    Article  ADS  Google Scholar 

  10. A. I. Gusev, JETP Lett. 91, 119 (2010).

    Article  ADS  Google Scholar 

  11. A. I. Gusev, J. Solid State Chem. 199, 181 (2013).

    Article  ADS  Google Scholar 

  12. A. I. Gusev, J. Exp. Theor. Phys. 117, 293 (2013).

    Article  ADS  Google Scholar 

  13. M. G. Kostenko, A. V. Lukoyanov, A. A. Valeeva, and A. I. Gusev, J. Exp. Theor. Phys. 129, 863 (2019).

    Article  ADS  Google Scholar 

  14. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).

    Article  ADS  Google Scholar 

  15. A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res. 44, 227 (2011).

    Article  Google Scholar 

  16. A. O. Lyakhov, A. R. Oganov, H. T. Stoke, and Q. Zhu, Comput. Phys. Commun. 184, 1172 (2013).

    Article  ADS  Google Scholar 

  17. Q. Zeng, J. Peng, A. R. Oganov, Q. Zhu, C. Xie, X. Zhang, D. Dong, L. Zhang, and L. Cheng, Phys. Rev. B 88, 214107 (2013).

    Article  ADS  Google Scholar 

  18. C. Xie, A. R. Oganov, D. Li, T. T. Debela, N. Liu, D. Dong, and Q. Zeng, Phys. Chem. Chem. Phys. 18, 12299 (2016).

    Article  Google Scholar 

  19. E. Parthe and K. Yvon, Acta Crystallogr., B 26, 153 (1970).

    Article  Google Scholar 

  20. A. L. Efros, Physics and Geometry of Disorder. Percolation Theory (Nauka, Moscow, 1982; Mir, Moscow, 1986).

  21. H. Kesten, Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982).

    Book  Google Scholar 

  22. A. I. Gusev, Phys. Status Solidi A 111, 443 (1989).

    Article  ADS  Google Scholar 

  23. O. V. Kovalev, Irreducible Representations of the Space Groups (Akad. Nauk USSR, Kiev, 1961; Gordon and Breach, New York, 1965).

  24. O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  25. V. G. Vaks, V. I. Zinenko, and V. E. Shneider, Sov. Phys. Usp. 26, 1059 (1983).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-52-53010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Kostenko or A. I. Gusev.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostenko, M.G., Sadovnikov, S.I. & Gusev, A.I. M5C4 Phases—New Family of Carbide Superstructures. J. Exp. Theor. Phys. 131, 572–581 (2020). https://doi.org/10.1134/S1063776120090058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120090058

Navigation