Skip to main content
Log in

Features of the Ignition of a Laser Fusion Target by a Converging Shock Wave

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The compression and burning of a fusion target ignited by a focused shock wave produced at the action of a time-profiled second harmonic laser pulse of a Nd laser have been calculated and theoretically studied. The main energy features of the shock ignition scheme have been considered. The use of the second harmonic radiation corresponds to a higher energy and a longer laser pulse necessary for ignition by this method compared to the use of the third harmonic radiation. Nevertheless, the method of ignition by the focused shock wave with the second harmonic radiation makes it possible to reach the fusion target gain that is two or three times higher than that at the traditional spark ignition with the laser pulse energy higher than in the former case by a factor of 1.5. The numerical calculations have been performed with one-dimensional hydrodynamic codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. A. Shcherbakov, Sov. J. Plasma Phys. 9, 240 (1983).

    Google Scholar 

  2. R. Nora, W. Theobald, R. Betti, et al., Phys. Rev. Lett. 114, 045001 (2015).

    Article  ADS  Google Scholar 

  3. A. R. Piriz, P. G. Rodriguez, N. A. Tahi, et al., Phys. Plasmas 19, 122705 (2012).

    Article  ADS  Google Scholar 

  4. W. Theobald, R. Betti, C. Stoekl, et al., Phys. Plasmas 15, 056306 (2008).

    Article  ADS  Google Scholar 

  5. W. L. Shang, R. Betti, S. X. Hu, et al., Phys. Rev. Lett. 119, 195001 (2017).

    Article  ADS  Google Scholar 

  6. S. Yu. Gus’kov, P. A. Kuhugov, R. A. Yakhin, and N. V. Zmitrenko, Plasma Phys. Control. Fusion 61, 055003 (2019).

    Article  ADS  Google Scholar 

  7. S. Yu. Gus’kov, P. A. Kuhugov, R. A. Yakhin, and N. V. Zmitrenko, Plasma Phys. Control. Fusion 61, 105014 (2019).

    Article  ADS  Google Scholar 

  8. R. S. Craxton, K. S. Anderson, T. R. Boehly, et al., Phys. Plasmas 22, 110501 (2015).

    Article  ADS  Google Scholar 

  9. A. J. Kemp, F. Fiuza, A. Debayle, et al., Nucl. Fusion 54, 054002 (2014).

    Article  ADS  Google Scholar 

  10. S. Yu. Gus’kov, Plasma Phys. Rep. 39, 1 (2013).

    Article  ADS  Google Scholar 

  11. M. Lafon, X. Ribeyre, and G. Schurtz, Phys. Plasmas 17, 052704 (2010).

    Article  ADS  Google Scholar 

  12. R. Betti, C. D. Zhou, K. S. Anderson, et al., Phys. Rev. Lett. 98, 155001 (2007).

    Article  ADS  Google Scholar 

  13. X. Ribeyre, M. Lafon, G. Shurtz, et al., Plasma Phys. Control. Fusion 51, 124030 (2009).

    Article  ADS  Google Scholar 

  14. S. Atzeni, A. Marocchino, A. Schiavi, et al., New J. Phys. 15, 045004 (2013).

    Article  ADS  Google Scholar 

  15. M. Lafon, X. Ribeyre, and G. Schurtz, Phys. Plasmas 20, 022708 (2013).

    Article  ADS  Google Scholar 

  16. S. Atzeni, X. Ribeyre, G. Shurtz, et al., Nucl. Fusion 54, 054008 (2014).

    Article  ADS  Google Scholar 

  17. D. Batani, S. Baton, A. Casner, et al., Nucl. Fusion 54, 054009 (2014).

    Article  ADS  Google Scholar 

  18. E. Moses and C. R. Wuest, Fusion Sci. Technol. 47, 314 (2005).

    Article  Google Scholar 

  19. T. Boehly, D. Brown, R. Craxton, et al., Opt. Commun. 133, 495 (1997).

    Article  ADS  Google Scholar 

  20. S. G. Garanin, Phys. Usp. 54, 415 (2011).

    Article  ADS  Google Scholar 

  21. L. J. Perkins, R. Betti, K. N. LaFortune, et al., Phys. Rev. Lett. 103, 045004 (2009).

    Article  ADS  Google Scholar 

  22. S. Atzeni, A. Shiavi, A. Marohino, et al., Plasma Phys. Control. Fusion 53, 035010 (2011).

    Article  ADS  Google Scholar 

  23. K. S. Anderson, R. Betti, P. W. McKenty, et al., Phys. Plasmas 20, 056312 (2013).

    Article  ADS  Google Scholar 

  24. S. Atzeni, A. Marocchino, and A. Schiavi, Phys. Plasmas 19, 090702 (2012).

    Article  ADS  Google Scholar 

  25. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, P. A. Kuchugov, N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 121, 686 (2015).

    Article  ADS  Google Scholar 

  26. N. N. Demchenko, I. Ya. Doskoch, S. Yu. Gus’kov, et al., Laser Part. Beams 33, 65 (2015).

    Article  Google Scholar 

  27. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, N. V. Zmitrenko, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 124, 341 (2017).

    Article  ADS  Google Scholar 

  28. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, P. A. Kuchugov, N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 127, 539 (2018).

    Article  ADS  Google Scholar 

  29. S. A. Bel’kov, S. V. Bondarenko, N. N. Demchenko, et al., Plasma Phys. Control. Fusion 61, 025011 (2019).

    Article  ADS  Google Scholar 

  30. S. Yu. Gus’kov, N. N. Demchenko, N. V. Zmitrenko, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, JETP Lett. 105, 402 (2017).

    Article  ADS  Google Scholar 

  31. S. Yu. Gus’kov, N. N. Demchenko, N. V. Zmitrenko, P. A. Kuchugov, and R. A. Yakhin, J. Exp. Theor. Phys. 130, 748 (2020).

    Article  ADS  Google Scholar 

  32. N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeev, et al., Vopr. At. Nauki Tekh., Ser.: Metod. Progr. Chisl. Reshen. Zadach Mat. Fiz., No. 2, 34 (1983).

  33. H. Takabe, K. Mima, L. Montierth, et al., Phys. Fluids 28, 3676 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  34. Yu. V. Afanas’ev, E. G. Gamalii, N. N. Demchenko, et al., Sov. Phys. JETP 52, 425 (1980).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Yakhin.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bel’kov, S.A., Bondarenko, S.V., Garanin, S.G. et al. Features of the Ignition of a Laser Fusion Target by a Converging Shock Wave. J. Exp. Theor. Phys. 131, 636–644 (2020). https://doi.org/10.1134/S1063776120090149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120090149

Navigation