Skip to main content
Log in

Evolution of the Ferromagnetism of MnxSi1 –x (x ≈ 0.5) Films Produced by Laser Synthesis on c- and r-Cut Sapphire Substrates as the Laser Energy Density on the Target Changes

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

MnxSi1 – x (x ≈ 0.5) thin films have been produced on c- and r-cut sapphire substrates by the droplet-free pulsed laser deposition method at various laser energy densities E on the target. Their magnetic, electric, and X-ray diffraction properties as a function of E and substrate orientation have been investigated. It has been established that the high-temperature ferromagnetic phase in the films at E ≥ 6 J cm–2 is more pronounced than that at E ≈ 4–5 J cm–2, when the low-temperature ferromagnetic phase dominates and there is no influence of the sapphire substrate orientation. The attained Curie temperature TC was 330 K at E ≈ 7.4 J cm–2 for the MnxSi1 – x films produced on c- and r-cut sapphire substrates. The magnetization of the MnxSi1 – x films produced at E ≥ 6 J cm–2 on c-cut sapphire is higher than that on r-cut sapphire and, conversely, lower when E ≤ 5.5 J cm–2. A change in the ratio of the diffuse signal amplitudes in the X-ray spectra for the films grown on different substrates is also observed under these conditions. Such a correlated behavior with magnetization is explained by the existence of ε-MnSi nanocrystallites of optimal sizes, which, on the one hand, are responsible for the emergence of a diffuse signal in the X-ray spectra and, on the other hand, determine the high-temperature ferromagnetism of the films. The concentration of such nanocrystallites and the distribution of defects in the films are controlled by the type of substrate and the energy density on the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Zhou and H. Schmidt, Materials 3, 5054 (2010).

    Article  ADS  Google Scholar 

  2. V. V. Ryl’kov, S. N. Nikolaev, K. Yu. Chernoglazov, B. A. Aronzon, K. I. Maslakov, V. V. Tugushev, E. T. Kulatov, I. A. Likhachev, E. M. Pashaev, A. S. Semisalova, N. S. Perov, A. B. Granovskii, E. A. Gan’shina, O. A. Novodvorskii, O. D. Khramova, E. V. Khaidukov, and V. Ya. Panchenko, JETP Lett. 96, 255 (2012).

    Article  ADS  Google Scholar 

  3. V. V. Rylkov, E. A. Gan’shina, O. A. Novodvorskii, et al., Europhys. Lett. 103, 57014 (2013).

    Article  ADS  Google Scholar 

  4. V. N. Men’shov, V. V. Tugushev, S. Caprara, et al., Phys. Rev. B 83, 035201 (2011).

    Article  ADS  Google Scholar 

  5. S. M. Stishov and A. E. Petrova, Phys. Usp. 54, 1117 (2011).

    Article  ADS  Google Scholar 

  6. S. N. Nikolaev, A. S. Semisalova, V. V. Rylkov, et al., AIP Adv. 6, 015020 (2016).

    Article  ADS  Google Scholar 

  7. K. Yu. Chernoglazov, S. N. Nikolaev, V. V. Ryl’kov, A. S. Semisalova, A. V. Zenkevich, V. V. Tugushev, A. L. Vasil’ev, Yu. M. Chesnokov, E. M. Pashaev, Yu. A. Matveev, A. B. Granovskii, O. A. Novodvorskii, A. S. Vedeneev, A. S. Bugaev, O. Drachenko, and S. Zhou, JETP Lett. 103, 476 (2016).

    Article  ADS  Google Scholar 

  8. B. A. Aronzon, A. B. Davydov, A. L. Vasiliev, et al., J. Phys.: Condens. Matter 29, 055802 (2017).

    ADS  Google Scholar 

  9. A. Yang, K. Zhang, S. Yan, et al., J. Alloys Compd. 623, 438 (2015).

    Article  Google Scholar 

  10. A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, et al., J. Magn. Magn. Mater. 429, 305 (2017).

    Article  ADS  Google Scholar 

  11. L. S. Parshina, O. D. Khramova, O. A. Novodvorsky, et al., Semiconductors 51, 407 (2017).

    Article  ADS  Google Scholar 

  12. P. Pandey, A. B. Drovosekov, Y. Wang, et al., J. Magn. Magn. Mater. 459, 206 (2018).

    Article  ADS  Google Scholar 

  13. A. B. Drovosekov, A. O. Savitsky, N. M. Kreines, V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, A. N. Taldenkov, E. A. Cherebylo, V. A. Mikhalevskii, O. A. Novodvorskii, K. I. Maslakov, P. Pandey, and S. Zhou, Phys. Solid State 60, 2188 (2018).

    Article  ADS  Google Scholar 

  14. O. A. Novodvorsky, V. A. Mikhalevsky, D. S. Gusev, A. A. Lotin, L. S. Parshina, O. D. Khramova, E. A. Cherebylo, A. B. Drovosekov, V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, and K. I. Maslakov, Semiconductors 52, 1424 (2018).

    Article  ADS  Google Scholar 

  15. L. S. Parshina, O. A. Novodvorsky, O. D. Khramova, et al., Opt. Quant. Electron. 48, 316 (2016).

    Article  Google Scholar 

  16. J. M. Chauveau, P. Vennéguś, M. Laügt, et al., J. Appl. Phys. 104, 073535 (2008).

  17. S. V. Tsybulya and S. V. Cherepanova, Introduction to Structural Analysis of Nanocrystals (Novosib. Gos. Univ., Novosibirsk, 2008) [in Russian].

    Google Scholar 

  18. V. I. Iveronova and G. P. Revkevich, X-ray Scattering Theory (Mosk. Gos. Univ., Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS and the Fryazino Branch of the Institute of Radio Engineering and Electronics of the Russian Academy of Sciences in the part “laser synthesis of MnxSi1 – x (x ≈ 0.5)/sapphire film structures using precision shadow masks”, the Russian Foundation for Basic Research (project nos. 17-07-00615, 18-07-00772, 18-07-00729, 19-29-03032, 19-07-00471, 19-07-00738) in the part “studies of electrical and structural properties of film structures”, and the Basic Research Program of the Presidium of the Russian Academy of Sciences “Topical Problems of Low-Temperature Physics” in the part “low-temperature studies of FMR films”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Parshina.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parshina, L.S., Drovosekov, A.B., Novodvorsky, O.A. et al. Evolution of the Ferromagnetism of MnxSi1 –x (x ≈ 0.5) Films Produced by Laser Synthesis on c- and r-Cut Sapphire Substrates as the Laser Energy Density on the Target Changes. J. Exp. Theor. Phys. 131, 618–623 (2020). https://doi.org/10.1134/S1063776120090198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120090198

Navigation