Skip to main content

Advertisement

Log in

Structure and Physicomechanical Properties of Cast Titanium Alloys of the Ti−Nb−Mo System

  • Published:
Materials Science Aims and scope

Ternary alloys of the Ti–Nb–Mo system are obtained by the method of arc remelting with subsequent crystallization on a copper water-cooled hearth. In these alloys characterized by contents of alloying elements corresponding to the molybdenum equivalent (Moeqv) within the range 3.2–4.0, we observe the formation of hexagonal (α′) and orthorhombic (α′′ ) martensites. For higher Moeqv (4.6), we detect the appearance of a phase based on β -titanium instead of the orthorhombic martensite. In all analyzed alloys, we do not reveal the acicular microstructures characteristic of martensites. In these alloys, the (β -Ti) phase has higher hardness and Young’s modulus as compared with α′ and α′′. The Ti94Nb4Mo2 and Ti92.5Nb5Mo2.5 as-cast alloys are characterized by low Young’s moduli (∼ 70 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. R. Thull, “Naturwissenschaftliche Aspekte von Werkstoffen in der Medizin,” Naturwissenschaften, 81, No. 11, 481–488 (1994).

    Article  CAS  Google Scholar 

  2. J. Kudrman, J. Fousek, V. Brezina, R. Mikova, and J. Vesely, “Titanium alloys for implants in medicine,” Kovove Mater., 45, 199–208 (2007).

    CAS  Google Scholar 

  3. L. J. Xu, Y. Y. Chen, Zh. G. Liu, and F. T. Kong, “The microstructure and properties of Ti–Mo–Nb alloys for biomedical application,” J. Alloys Comp., 453, No. 1–2, 320–324 (2008).

    Article  CAS  Google Scholar 

  4. R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D. M. Gordin, T. Gloriant, and R. M. Souto, “Metastable beta Ti–Nb–Mo alloys with improved corrosion resistance in saline solution,” Electrochim. Acta, 137, 280–289 (2014).

    Article  CAS  Google Scholar 

  5. M. Niinomi, “Recent titanium R&D for biomedical applications in Japan,” J. Miner. Met. Mater. Soc. (JOM-US), 51, No. 6, 32–34 (1999).

    Article  CAS  Google Scholar 

  6. V. Cheverikin, G. Ghosh, A. Makudera, and J.-C. Tedenac, Mo–Nb–Ti Ternary Phase Diagram Evaluation, in: G. Effenberg (editor),Mater. Sci. Int., Stuttgart (2015), Document ID 10.21856.1.1 http://www.msi-eureka.com/preview-html/10.21856.1.1/Mo-Nb-Ti_Ternary_ Phase_Diagram_Evaluation/

  7. V. N. Eremenko and L. A. Tret’yachenko, Ternary Systems of Titanium with Transition Metals of the IV–VI Groups [in Russian], Naukova Dumka, Kiev (1987).

  8. N. N. Sobolev, V. I. Levanov, O. P. Elyutin, and V. S. Mikheev, “Construction of the melting diagram of the Ti–V–Nb–Mo system by the simplex lattice method,” Izv. Akad. Nauk SSSR, Metally, 2, 217–221 (1974).

    Google Scholar 

  9. I. T. Kornilov and R. S. Polyakova, “Diagram of state for the titanium–niobium–molybdenum ternary system,” J. Neorg. Khim., 3, No. 4, 879–888 (1958).

    CAS  Google Scholar 

  10. V. A. Kuz’menko, Sonic and Ultrasonic Oscillations in Dynamic Testing of Materials [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1963).

  11. S. A. Firstov, V. F. Gorban’, and E. P. Pechkovskii, “Determination of the ultimate values of hardness, elastic strains, and the corresponding stresses in materials by the method of automatic indentation,” Materialovedenie, No. 8, 15–21 (2008).

  12. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties: A Handbook [in Russian], VILSMATI, Moscow (2009).

  13. Y. Al-Zain, H. Y. Kim, T. Koyano, H. Hosoda, T. H. Nam, and S. Miyazaki, “Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys,” Acta Mater., 59, 1464–1473 (2011).

    Article  CAS  Google Scholar 

  14. W. H. Graft and W. Rostoker, “The measurement of elastic modulus of titanium alloys,” in: Symp. on Titanium, Second Pacific Area National Meeting, ASTM, Philadelphia (1957), pp. 130–144.

  15. W. F. Ho, C. P. Ju, and J. H Lin, “Structure and properties of cast binary Ti–Mo alloys,” Biomaterials, 20, No. 22, 2115–2122 (1999).

    Article  CAS  Google Scholar 

  16. V. F. Gorban’ and E. P. Pechkovskii, “Relationship between the parameters of elasticity obtained by the method of instrumental indentation and the structural state of the material,” Poroshk. Metallurgiya, No. 7–8, 54–62 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. М. Мyslyvchenko.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 56, No. 2, pp. 81–87, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Мyslyvchenko, О.М., Bondar, A.А., Horban, V.F. et al. Structure and Physicomechanical Properties of Cast Titanium Alloys of the Ti−Nb−Mo System. Mater Sci 56, 224–231 (2020). https://doi.org/10.1007/s11003-020-00420-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-020-00420-2

Keywords

Navigation