Skip to main content
Log in

The Impact of Iron–Molybdenum Polyoxometalates and a Mixture of Nanoparticle Components on the Content of Nucleic Acids and Histone Proteins in Rat Blood Lymphocytes

  • NANOBIOLOGY AND GENETICS, OMIX TECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Nanomaterials can exhibit a more pronounced genotoxic effect compared to the individual components contained in them, changing the structure of DNA and histone proteins, as well as the amount of these substances. We analyzed the impact of the Keplerate-type nanocluster iron–molybdenum polyoxometalate (POM) and POM degradation products in solutions on the content of nucleic acids, free nucleotides, and histone proteins in blood lymphocytes of Wistar rats. We revealed a reversible increase in the amount of DNA after a single injection of POM with a dose of 0.15 mg/100 g and no decrease in the histone content after 1, 7, and 30 injections. On the contrary, the products of degradation of the same POM dose changed the level of DNA, RNA, free nucleotides, total histone number, and the histone fractions. Preservation of the total number of lymphocytes during thirty-fold exposure to POM, in contrast to the effects of degradation products, confirms the less pronounced toxic effect of POM compared to the action of the POM component mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Åkerlund, F. Cappellini, S. di Bucchianico, et al., Environ. Mol. Mutagen. 59, 211 (2018). https://doi.org/10.1002/em.22163

    Article  CAS  Google Scholar 

  2. R. F. de Carli, D. D. S. Chaves, T. R. Cardozo, et al., Mutat. Res. Genet. Toxicol. Environ. Mutagen., Pt. B 836, 47 (2018). https://doi.org/10.1016/j.mrgentox.2018.06.003

    Article  CAS  Google Scholar 

  3. H. Moratin, A. Scherzad, T. Gehrke, et al., Environ. Mol. Mutagen. 59, 247 (2018). https://doi.org/10.1002/em.22156

    Article  CAS  Google Scholar 

  4. M. Oliviero, S. Schiavo, S. Dumontet, and S. Manzo, Sci. Total. Environ. 651, 756 (2019). https://doi.org/10.1016/j.scitotenv.2018.09.243

    Article  CAS  Google Scholar 

  5. M. Santonastaso, F. Mottola, N. Colacurci, et al., Mol. Reprod. Dev. 86, 1369 (2019). https://doi.org/10.1002/mrd.23134

    Article  CAS  Google Scholar 

  6. A. K. Jain, D. Singh, K. Dubey, et al., J. Appl. Toxicol. 39, 735 (2019). https://doi.org/10.1002/jat.3763

    Article  CAS  Google Scholar 

  7. R. S. Bonadio, M. C. P. C. D. Cunha, J. P. F. Longo, et al., J. Nanosci. Nanotechnol. 20, 1454 (2020). https://doi.org/10.1166/jnn.2020.16956

    Article  CAS  Google Scholar 

  8. B. S. E. Wong, Q. Hu, and G. H. Baeg, Food Chem. Toxicol. 109, 746 (2017). https://doi.org/10.1016/j.fct.2017.07.006

    Article  CAS  Google Scholar 

  9. R. A. Zager and A. C. Johnson, Am. J. Physiol. Renal. Physiol. 298, 827 (2010). https://doi.org/10.1152/ajprenal.00683.2009

    Article  CAS  Google Scholar 

  10. L. M. Villeneuve, M. A. Reddy, L. L. Lanting, et al., Proc. Natl. Acad. Sci. U. S. A. 105, 9047 (2008). https://doi.org/10.1073/pnas.0803623105

    Article  Google Scholar 

  11. M. M. Rageh, R. H. El-Gebaly, and M. M. Afifi, Naunyn. Schmiedebergs. Arch. Pharmacol. 391, 1421 (2018). https://doi.org/10.1007/s00210-018-1558-5

    Article  CAS  Google Scholar 

  12. F. Fatima, N. Pathak, S. R. Verma, and P. Bajpai, Artif. Cells Nanomed. Biotechnol. 46, 1637 (2018). https://doi.org/10.1080/21691401.2017.1388247

    Article  CAS  Google Scholar 

  13. V. Baskar, S. Nayeem, S. P. Kuppuraj, et al., Biotechnology 8, 362 (2018). https://doi.org/10.1007/s13205-018-1386-9

    Article  Google Scholar 

  14. O. A. Alabi, A. H. Silva, L. R. P. Purnhagen, et al., Sci. Total Environ. 660, 1264 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.036

    Article  CAS  Google Scholar 

  15. N. Fernéz-Bertólez, C. Costa, and F. Brandão, et al., Food Chem. Toxicol. 118, 13 (2018). https://doi.org/10.1016/j.fct.2018.04.058

    Article  CAS  Google Scholar 

  16. V. Manickam, V. Dhakshinamoorthy, and E. Perumal, J. Mol. Neurosci. 64, 352 (2018). https://doi.org/10.1007/s12031-018-1030-5

    Article  CAS  Google Scholar 

  17. R. A. R. Villacis, J. S. Filho, B. Piña, et al., Aquat. Toxicol. 191, 219 (2017). https://doi.org/10.1016/j.aquatox.2017.08.004

    Article  CAS  Google Scholar 

  18. O. L. Apykhtina, S. M. Dybkova, L. M. Sokurenko, and Y. B. Chaikovsky, Exp. Oncol. 40, 194 (2018).

    Article  Google Scholar 

  19. J. Lebedová, Y. S. Hedberg, I. Odnevall Wallinder, and H. L. Karlsson, Mutagenesis 33, 77 (2018). https://doi.org/10.1093/mutage/gex027

    Article  CAS  Google Scholar 

  20. S. May, C. Hirsch, A. Rippl, et al., Nanoscale 10, 15723 (2018). https://doi.org/10.1039/c8nr03612h

    Article  CAS  Google Scholar 

  21. X. Du, S. Gao, L. Hong, et al., Mutat. Res. Genet. Toxicol. Environ. Mutagen. 838, 22 (2019). https://doi.org/10.1016/j.mrgentox.2018.11.015

    Article  CAS  Google Scholar 

  22. A. D. C. Martins, Jr., L. F. Azevedo, C. C. de Souza Rocha, et al., J. Toxicol. Environ. Health A 80, 1156 (2017). https://doi.org/10.1080/15287394.2017.1357376

    Article  CAS  Google Scholar 

  23. F. Zhou, F. Liao, L. Chen, et al., Environ. Sci. Pollut. Res. Int. 26, 1911 (2019). https://doi.org/10.1007/s11356-018-3695-2

    Article  CAS  Google Scholar 

  24. I. F. Gette, Vestn. Ural. Med. Akad. Nauki 49 (3), 19 (2014).

    Google Scholar 

  25. F. Gao, N. Ma, H. Zhou, et al., Int. J. Nanomed. 11, 3859 (2016). https://doi.org/10.2147/IJN.S107021

    Article  CAS  Google Scholar 

  26. I. G. Danilova, I. F. Gette, S. Yu. Medvedeva, et al., Nanotechnol. Russ. 10, 820 (2015). https://doi.org/10.1134/S1995078015050055

    Article  CAS  Google Scholar 

  27. I. F. Gette, I. G. Danilova, and A. A. Ostroushko, “Hystone proteins content in blood lymphocytes and manifestation of inflammatory process,” Ross. Immunol. Zh. 9, 444 (2015).

    Google Scholar 

  28. I. G. Danilova, I. F. Gette, S. Yu. Medvedeva, et al., Nanotechnol. Russ. 11, 653 (2016). https://doi.org/10.1134/S1995078016050049

    Article  CAS  Google Scholar 

  29. A. A. Ostroushko, I. D. Gagarin, I. G. Danilova, and I. F. Gette, Nanosyst.: Phys., Chem., Math. 10, 318 (2019). https://doi.org/10.17586/2220-80-54-2019-10-3-318-349

    Article  CAS  Google Scholar 

  30. A. A. Ostroushko and M. O. Tonkushina, Russ. J. Phys. Chem. A 89, 443 (2015). https://doi.org/10.1134/S003602441503022X

    Article  CAS  Google Scholar 

  31. A. A. Ostroushko, M. O. Tonkushina, V. Yu. Korotaev, et al., Russ. J. Inorg. Chem. 57, 1210 (2012). https://doi.org/10.1134/S0036023612090173

    Article  CAS  Google Scholar 

  32. A. A. Ostroushko, I. F. Gette, S. Yu. Medvedeva, et al., Vestn. Ural. Akad. Med. Nauki 34, 107 (2011).

    Google Scholar 

  33. A. A. Ostroushko, I. F. Gette, I. G. Danilova, et al., Nanotechnol. Russ. 9, 577 (2014). https://doi.org/10.1134/S1995078014050115

    Article  CAS  Google Scholar 

  34. M. O. Tonkushina, I. D. Gagarin, K. V. Grzhegorzhevskii, and A. A. Ostroushko, Vestn. Ural. Akad. Med. Nauki. 49 (3), 59 (2014).

    Google Scholar 

  35. I. D. Gagarin, N. A. Kulesh, M. O. Tonkushina, et al., in Physicochemical Aspects of Studying Clusters, Nanostructures and Nanomaterials, Interschool Collection of Articles (Tvers. Gos. Univ., Tver’, 2017), No. 9, p. 147. https://doi.org/10.26456/pcascnn/2017.9.147

  36. A. Ostroushko, I. Gagarin, M. Tonkushina, et al., J. Clust. Sci. 29, 111 (2018). https://doi.org/10.1007/s10876-017-1304-z

    Article  CAS  Google Scholar 

  37. A. A. Ostroushko, I. G. Danilova, I. F. Gette, and M. O. Tonkushina, Russ. J. Inorg. Chem. 60, 500 (2015). https://doi.org/10.1134/S003602361504018X

    Article  CAS  Google Scholar 

  38. A. A. Ostroushko, M. O. Tonkushina, and N. A. Martynova, Russ. J. Phys. Chem. A 84, 1022 (2010).

    Article  CAS  Google Scholar 

  39. A. A. Ostroushko, A. P. Safronov, M. O. Tonkushina, et al., Russ. J. Phys. Chem. A 88, 2179 (2014). https://doi.org/10.1134/S0036024414120231

    Article  CAS  Google Scholar 

  40. A. A. Ostroushko, I. F. Gette, S. Yu. Medvedeva, et al., Nanotechnol. Russ. 8, 672 (2013). https://doi.org/10.1134/S1995078013050108

    Article  Google Scholar 

  41. A. A. Ostroushko, M. V. Ulitko, M. O. Tonkushina, et al., Nanotechnol. Russ. 13, 3 (2018). https://doi.org/10.1134/S199507801801010X

    Article  Google Scholar 

  42. I. Gagarin, M. Tonkushina, and A. Ostroushko, in Proceedings of the Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (IEEE, Russia, Siberia, 2018), p. 41. https://doi.org/10.1109/USBEREIT.2018.8384545

  43. L. I. Markusheva, M. I. Savina, V. M. Reshina, and R. T. Toguzov, Klin. Labor. Diagn., No. 7, 18 (2000).

  44. C. H. Righolt, A. Guffei, H. Knecht, et al., J. Cell. Biochem. 115, 1441 (2014). https://doi.org/10.1002/jcb.24800

    Article  CAS  Google Scholar 

  45. A. Müller, E. Krickemeyer, H. Bögge, et al., Angew. Chem., Int. Ed. 37, 3360 (1998). https://doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3359::AID-ANIE3359>3.0.CO;2-J

    Article  Google Scholar 

  46. A. Müller, S. Sarkar, S. Q. Shah Nazir, et al., Angew. Chem., Int. Ed. Engl. 38, 3238 (1999). https://doi.org/10.1002/(SICI)1521-3773(19991102)38:21<3238::AID-ANIE3238>3.0.CO;2-6

    Article  Google Scholar 

  47. K. V. Grzhegorzhevskii, P. S. Zelenovskiy, O. V. Koryakova, and A. A. Ostroushko, Inorg. Chim. Acta 489, 287 (2019). https://doi.org/10.1016/j.ica.2019.01.016

    Article  CAS  Google Scholar 

  48. M. V. Mokhosoev and N. A. Shevtsova, State of Molybdenum and Tungsten Ions in Aqueous Solutions (Buryatsk. Knizhn. Izdat., Ulan-Ude, 1977) [in Russian].

    Google Scholar 

  49. A. A. Ostroushko and M. O. Tonkushina, “Destruction of porous spherical Mo132 nanocluster polyoxometallate of keplerate type in aqueous solutions,” Russ. J. Phys. Chem. A 90, 436 (2016). https://doi.org/10.1134/S0036024416020229

    Article  CAS  Google Scholar 

  50. N. N. Il’inskikh, E. N. Il’inskikh, V. D. Talynev, et al., Byull. Med. Nauki 14 (2), 67 (2019). https://doi.org/10.31684/2541-8475.2019.2(14).67-69

    Article  Google Scholar 

  51. N. V. Ryazantseva, O. B. Zhukova, E. I. Beloborodova, et al., Ross. Zh. Gastroenterol., Gepatol. Koloproktol., No. 1, 37 (2004).

  52. L. P. Sycheva, Med. Genet., No. 11, 3 (2007).

Download references

Funding

This study was carried out within the framework of a State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2020-0052 and AAAA-A18-118020590107-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Gette.

Additional information

Translated by I. Shipounova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gette, I.F., Danilova, I.G., Tonkushina, M.O. et al. The Impact of Iron–Molybdenum Polyoxometalates and a Mixture of Nanoparticle Components on the Content of Nucleic Acids and Histone Proteins in Rat Blood Lymphocytes. Nanotechnol Russia 15, 191–197 (2020). https://doi.org/10.1134/S1995078020020081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020020081

Navigation