Skip to main content
Log in

Effects of TiO2 Nanoparticles on Germination and Growth Characteristics of Grass Pea (Lathyrus sativus L.) Seed under Drought Stress

  • NANOBIOLOGY AND GENETICS, OMIX TECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This study was carried out to investigate the effects of nano titanium dioxide nanoparticles (TiO2 NPS), on seed germination and germination indices of Grass pea (Lathyrus sativus L.) seed under drought stress. A factorial experiment was arranged based on a completely randomized design with three replicates to study the impacts of TiO2 nanoparticles (TiO2 NPs: 0, 20, 40, 60, and 80 ppm) on seed germination and seedling growth of grass pea under Polyethylene glycol (PEG) induced drought stress different (–0.00, –0.27, ‒0.53, and –0.80 MPa, respectively) were tried in a preliminary experiment. Our results revealed that PEG-stimulated drought stress significantly decreased germination percentage, germination energy, germination rate, root length, shoot length, root fresh weight, shoot fresh weight and vigor index but increased mean germination time in grass pea seeds. However, the application of TiO2 NPS protects Grass pea plants against drought stress and improves the Germination parameter, plant root length, shoot length, root fresh weight, shoot dry weight, root dry weight and shoot fresh weight in 20 ppm TiO2 NPS compared to control. Finally, In conclusion, the application of TiO2 NPS may protect Grass pea plants against drought stress by improving morphological growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Janáček and D. A. Wilhite, Biol Plant. 36, 628 (1994). https://doi.org/10.1007/BF02921195

    Article  Google Scholar 

  2. X. Zhang, G. Lu, W. Long, et al., Breeding Sci. 64, 60 (2014). https://doi.org/10.1270/jsbbs.64.60

    Article  CAS  Google Scholar 

  3. C. Somerville and J. Briscoe, Genet. Eng. Water 292, 2217 (2001). https://doi.org/10.1126/science.292.5525.2217

    Article  CAS  Google Scholar 

  4. C. A. Jaleel, R. Gopi, B. Sankar, et al., C. R. Biol. 331, 42 (2008). https://doi.org/10.1016/j.crvi.2007.11.003

    Article  Google Scholar 

  5. M. Farooq, A. Wahid, T. Aziz, et al., Crop Pasture Sci. 60, 501 (2009).

    Article  Google Scholar 

  6. C. Li, D. Jiang, B. Wollenweber, et al., Plant Sci. 180, 672 (2011). https://doi.org/10.1016/j.plantsci.2011.01.009

    Article  CAS  Google Scholar 

  7. N. F. Almeida, D. Rubiales, and M. C. V. Patto, Grass pea, in Grain Legumes (Springer, New York, 2015).

    Google Scholar 

  8. C. D. Hanbury, C. L. White, B. P. Mullan, and K. H. M. Siddique, “A review of the potential of Lathyrus, L. Sativus, and L. Cicera, Grain for use as animal feed,” Animal Feed Sci. Technol. 87, 1–27 (2000). https://doi.org/10.1016/S0377-8401(00)00186-3

    Article  Google Scholar 

  9. D. Talukdar, J. Nat. Sci. Biol. Med. 4, 396 (2013). https://doi.org/10.4103/0976-9668.116983

    Article  CAS  Google Scholar 

  10. M. A. Shallan, H. M. Hassan, A. A. Namich, and A. A. Ibrahim, Res. J. Pharm. Biol. Chem. Sci. 7, 1540 (2016).

    CAS  Google Scholar 

  11. N. Veronica, T. Guru, R. Thatikunta, and S. N. Reddy, Int. J. Environ. Sci. Technol. 1, 1–3 (2015).

    Google Scholar 

  12. S. Laurent, D. Forge, M. Port, et al., Chem. Rev. 108, 2064 (2008). https://doi.org/10.1021/cr068445e

    Article  CAS  Google Scholar 

  13. W. K. Shin, J. Cho, A. G. Kannan, et al., Sci. Rep. 6, 26332 (2016). https://doi.org/10.1038/srep26332

    Article  CAS  Google Scholar 

  14. X. Ma, J. Geiser-Lee, Y. Deng, and A. Kolmakov, Sci. Total Environ. 408, 3053 (2010). https://doi.org/10.1016/j.scitotenv.2010.03.031

    Article  CAS  Google Scholar 

  15. S. S. Hojjat and M. Kamyab, Russ. Agricult. Sci. 43, 61 (2017). https://doi.org/10.3103/S1068367417010189

    Article  Google Scholar 

  16. S. S. Hojjat and H. Hojjat, Int. J. Food Eng. 1, 106 (2015).

    Google Scholar 

  17. S. S. Hojjat, Int. J. Agricult. Crop Sci. 8, 627 (2015).

    CAS  Google Scholar 

  18. S. S. Hojjat and H. Hojjat, Int. J. Farm. Allied Sci. 5, 248 (2016).

    Google Scholar 

  19. L. Giorgetti, C. Spanò, S. Muccifora, et al., Sci. Total Environ. 650, 2705 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.032

    Article  CAS  Google Scholar 

  20. G. A. Akbari, E. Morteza, P. Moaveni, et al., Int. J. Biosci. 4, 192 (2014).

    Google Scholar 

  21. M. Hrubý, P. Cigler, and S. Kuzel, J. Plant Nutrit. 25, 577 (2002). https://doi.org/10.1081/PLN-120003383

    Article  Google Scholar 

  22. L. Zheng, F. Hong, S. Lu, and C. Liu, Biol. Trace Elem. Res. 104, 83 (2005). https://doi.org/10.1385/BTER:104:1:083

    Article  CAS  Google Scholar 

  23. D. J. Lee, S. A. Senseman, A. S. Sciumbato, et al., J. Agric. Food Chem. 51, 2659 (2003). https://doi.org/10.1021/jf026232u

    Article  CAS  Google Scholar 

  24. E. Morteza, P. Moaveni, H. A. Farahani, and M. Kiyani, SpringerPlus 2, 247 (2013). https://doi.org/10.1186/2193-1801-2-247

    Article  CAS  Google Scholar 

  25. H. Mohammadi, M. Esmailpour, and A. Gheranpaye, Acta Agricult. Slov. 107, 385 (2016).

    Article  Google Scholar 

  26. A. Vashisth and S. Nagarajan, J. Plant Physiol. 167, 149 (2010). https://doi.org/10.1016/j.jplph.2009.08.011

    Article  CAS  Google Scholar 

  27. H. Mahmoodzadeh, R. Aghili, and M. Nabavi, Tech. J. Eng. Appl. Sci. 3, 1365 (2013).

    Google Scholar 

  28. H. Mahmoodzadeh, M. Nabavi, and H. Kashefi, J. Ornam. Horticult. Plants 3, 25 (2013).

    Google Scholar 

  29. A. Jaberzadeh, P. Moaveni, H. R. T. Moghadam, and H. Zahedi, Notulae Botan. Horti Agrobotan. Cluj-Napoca 41, 201 (2013). https://doi.org/10.15835/nbha4119093

  30. B. E. Michel and M. R. Kaufmann, Plant Physiol. 51, 914 (1973). https://doi.org/10.1104/pp.51.5.914

    Article  CAS  Google Scholar 

  31. LF. Wang, S. Jin, L. Wu, et al., Weed Technol. 30, 533 (2015). https://doi.org/10.1614/WT-D-15-00043

    Article  Google Scholar 

  32. Int. Seed Testing Assoc., Seed Sci. Technol. 4, 51-177 (1976).

  33. Int. Seed Testing Assoc., ISTA Rules (ISTA, Zurich, Switzerland, 2009).

  34. R. Amooaghaie, F. Tabatabaei, and A. M. Ahadi, Ecotoxicol. Environ. Safety 113, 259 (2015). https://doi.org/10.1016/j.ecoenv.2014.12.017

    Article  CAS  Google Scholar 

  35. J. D. Maguire, Crop Sci. 2, 176 (1962). https://doi.org/10.2135/cropsci1962.0011183X000200020033x

    Article  Google Scholar 

  36. L. S. Bates, R. P. Waldren, and I. D. Teare, Plant Soil 39, 205 (1973). https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  37. O. Kempthorne, The Design and Analysis of Experiments (Wiley, New York, 1952).

    Book  Google Scholar 

  38. T. T. Allen, Software overview and methods review: Minitab, in Introduction to Engineering Statistics and Lean Six Sigma (Springer, London, 2019), pp. 575–600. https://doi.org/10.1007/978-1-4471-7420-2_24

    Book  Google Scholar 

  39. J. V. Lagerwerff, G. Ogata, and H. E. Eagle, Science (Washington, DC, U.S.) 133, 1486 (1961). https://doi.org/10.1126/science.133.3463.1486

    Article  CAS  Google Scholar 

  40. Y. Ma, L. Kuang, X. He, et al., Chemosphere 78, 273 (2010). https://doi.org/10.1016/j.chemosphere.2009.10.050

    Article  CAS  Google Scholar 

  41. D. Lin and B. Xing, Environ. Pollut. 150, 243 (2007). https://doi.org/10.1016/j.envpol.2007.01.016

    Article  CAS  Google Scholar 

  42. M. D. Kaya, G. Okcub, M. Ataka, et al., Eur. J. Agron. 24, 291 (2006). https://doi.org/10.1016/j.eja.2005.08.001

    Article  CAS  Google Scholar 

  43. United States Environmental Protection Agency– USEPA (1996).

  44. M. Ashraf and H. Rauf, Acta Physiol. Plant 23, 407 (2001). https://doi.org/10.1007/s11738-001-0050-9

    Article  CAS  Google Scholar 

  45. L. Clément, C. Hurel, and N. Marmier, Chemosphere 90, 1083 (2013). https://doi.org/10.1016/j.chemosphere.2012.09.013

    Article  CAS  Google Scholar 

  46. L. R. Khot, S. Sankaran, J. M. Maja, et al., Crop Protect. 35, 64 (2012). https://doi.org/10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  47. E. Navarro, A. Baun, R. Behra, et al., Ecotoxicology 17, 372 (2008). https://doi.org/10.1007/s10646-008-0214-0

    Article  CAS  Google Scholar 

  48. S. Asli and P. M. Neumann, Plant, Cell Environ. 32, 577 (2009). https://doi.org/10.1111/j.1365-3040.2009.01952.x

    Article  CAS  Google Scholar 

  49. H. Mohammadi, M. Esmailpour, and A. Gheranpaye, Acta Agricult. Slov. 107, 385 (2016).

    Article  Google Scholar 

  50. S. Sauret-Gueto, G. Calder, and N. P. Harberd, Plant J. 69, 628 (2012). https://doi.org/10.1111/j.1365-313X.2011.04817.x

    Article  CAS  Google Scholar 

  51. S. Kumar, D. Gupta, and H. Nayyar, Acta Physiol. Plant 34, 75 (2012). https://doi.org/10.1007/s11738-011-0806-9

    Article  CAS  Google Scholar 

  52. M. A. Shallan, H. M. Hassan, A. A. Namich, and A. A. Ibrahim, Am.-Euras. J. Agricult. Environ. Sci. 12, 1252 (2012).

    Google Scholar 

  53. A. A. Ibrahim and M. H. El-Naggar, Zool. Middle East 59, 136 (2013). https://doi.org/10.1080/09397140.2013.810875

    Article  Google Scholar 

  54. S. S. Hojjat, J. Nabati, S. M. Mirmiran, and H. Hojjat, Azar. J. Agricult. 7, 17 (2020). https://doi.org/10.29252/azarinj.025

    Article  Google Scholar 

  55. L. Marchiol, A. Mattiello, F. Pošćić, et al., Environ. Res. Publ. Health 13, 332 (2016). https://doi.org/10.3390/ijerph13030332

    Article  CAS  Google Scholar 

  56. R. Raliya, P. Biswas, and J. C. Tarafdar, Biotechnol. Rep. 5, 22 (2015). https://doi.org/10.1016/j.btre.2014.10.009

    Article  Google Scholar 

  57. S. Yaqoob, F. Ullah, S. Mehmood, et al., J. Water Reuse Desalin. 8, 424 (2017). https://doi.org/10.2166/wrd.2017.163

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge Research Center for Plant Sciences, Ferdowsi University of Mashhad, for providing laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Saeid Hojjat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hojjat, S.S. Effects of TiO2 Nanoparticles on Germination and Growth Characteristics of Grass Pea (Lathyrus sativus L.) Seed under Drought Stress. Nanotechnol Russia 15, 204–211 (2020). https://doi.org/10.1134/S199507802002010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507802002010X

Navigation