Skip to main content
Log in

Jet Quenching with T-Dependent Running Coupling

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We perform an analysis of jet quenching in heavy ion collisions at RHIC and LHC energies with the temperature dependent running QCD coupling. Our results show that the T-dependent QCD coupling largely eliminates the difference between the optimal values of αs for the RHIC and LHC energies. It may be viewed as direct evidence of the increase in the thermal suppression of αs with rising temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigné, and D. Schiff, Nucl. Phys. B 483, 291 (1997); arXiv: hep-ph/9607355.

    Article  ADS  Google Scholar 

  2. B. G. Zakharov, JETP Lett. 63, 952 (1996); arXiv: hep-ph/9607440.

    Article  ADS  Google Scholar 

  3. U. A. Wiedemann, Nucl. Phys. A 690, 731 (2001); arXiv: hep-ph/0008241.

    Article  ADS  Google Scholar 

  4. M. Gyulassy, P. Lévai, and I. Vitev, Nucl. Phys. B 594, 371 (2001); arXiv: hep-ph/0006010.

    Article  ADS  Google Scholar 

  5. P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 0206, 030 (2002); arXiv: hep-ph/0204343.

    Article  ADS  Google Scholar 

  6. R. Baier, D. Schiff, and B. G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000); arXiv: hep-ph/0002198.

    Article  ADS  Google Scholar 

  7. B. G. Zakharov, JETP Lett. 86, 444 (2007); arXiv: 0708.0816.

    Article  ADS  Google Scholar 

  8. R. Baier, Y. L. Dokshitzer, A. H. Mueller, and D. Schiff, J. High Energy Phys. 0109, 033 (2001); arXiv: hep-ph/0106347.

    Article  ADS  Google Scholar 

  9. B. G. Zakharov, J. Phys. G (in press); arX-iv: 2007.09772.

  10. B. G. Zakharov, J. Phys. G 38, 124161 (2011).

    Article  ADS  Google Scholar 

  11. B. G. Zakharov, JETP Lett. 93, 683 (2011); arXiv: 1105.2028.

    Article  ADS  Google Scholar 

  12. B. G. Zakharov, J. Phys. G 40, 085003 (2013); arXiv: 1304.5742.

    Article  ADS  Google Scholar 

  13. K. M. Burke, A. Buzzatti, N. Chang, et al. (JET Collab.), Phys. Rev. C 90, 014909 (2014); arXiv: 1312.5003.

    Article  ADS  Google Scholar 

  14. X. Feal, C. A. Salgado, and R. A. Vazquez, arXiv: 1911.01309.

  15. B. G. Zakharov, JETP Lett. 80, 617 (2004); arXiv: hep-ph/0410321.

    Article  ADS  Google Scholar 

  16. B. G. Zakharov, JETP Lett. 88, 781 (2008); arXiv: 0811.0445.

    Article  ADS  Google Scholar 

  17. N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 64, 631 (1994); arXiv: hep-ph/9306230.

    Article  ADS  Google Scholar 

  18. B. G. Zakharov, JETP Lett. 80, 67 (2004); hep-ph/0406063.

    Article  ADS  Google Scholar 

  19. A. Bazavov, N. Brambilla, P. Petreczky, A. Vairob, and J. H. Webera, Phys. Rev. D 98, 054511 (2018); arXiv: 1804.10600.

    Article  ADS  Google Scholar 

  20. J. Braun and H. Gies, Phys. Lett. B 645, 53 (2007); hep-ph/0512085.

    Article  ADS  Google Scholar 

  21. A. C. Mattingly and P. M. Stevenson, Phys. Rev. D 49, 437 (1994); hep-ph/9307266.

    Article  ADS  Google Scholar 

  22. Yu. L. Dokshitzer, V. A. Khoze, and S. I. Troyan, Phys. Rev. D 53, 89 (1996); arXiv: hep-ph/9506425.

    Article  ADS  Google Scholar 

  23. J. D. Bjorken, Phys. Rev. D 27, 140 (1983).

    Article  ADS  Google Scholar 

  24. D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001); arXiv: nucl-th/0012025.

    Article  ADS  Google Scholar 

  25. B. G. Zakharov, JETP 124, 860 (2017); arXiv: 1611.05825.

    Article  ADS  Google Scholar 

  26. B. G. Zakharov, Eur. Phys. J. C 78, 427 (2018); arXiv: 1804.05405.

    Article  ADS  Google Scholar 

  27. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, J. High Energy Phys. 1011, 077 (2010); arXiv: 1007.2580.

    Article  ADS  Google Scholar 

  28. O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005); arXiv: hep-lat/0503017.

    Article  ADS  Google Scholar 

  29. P. Lévai and U. Heinz, Phys. Rev. C 57, 1879 (1998); hep-ph/9710463.

    Article  ADS  Google Scholar 

  30. A. Adare, S. Afanasiev, C. Aidala, et al. (PHENIX Collab.), Phys. Rev. C 87, 034911 (2013); arXiv: 1208.2254.

    Article  ADS  Google Scholar 

  31. S. Acharya et al. (ALICE Collab.), J. High Energy Phys. 1811, 013 (2018); arXiv: 1802.09145.

    Article  ADS  Google Scholar 

  32. The ATLAS Collab, ATLAS-CONF-2017-012. http://cds.cern.ch/record/2244824?ln=en.

  33. V. Khachatryan et al. (CMS Collab.), J. High Energy Phys. 1704, 039 (2017); arXiv: 1611.01664.

    Article  ADS  Google Scholar 

  34. R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, Phys. Rev. C 68, 044902 (2003); nucl-th/0306027.

    Article  ADS  Google Scholar 

  35. V. Minissale, F. Scardina, and V. Greco, Phys. Rev. C 92, 054904 (2015); arXiv: 1502.06213.

    Article  ADS  Google Scholar 

  36. B. Abelev, J. Adam, D. Adamova, et al. (ALICE Collab.), Phys. Lett. B 720, 52 (2013); arXiv: 1208.2711.

    Article  ADS  Google Scholar 

  37. G. Aad, B. Abbott, J. Abdallah, et al. (ATLAS Collab.), J. High Energy Phys. 1509, 050 (2015); arXiv: 1504.04337.

    Article  ADS  Google Scholar 

  38. S. Chatrchyan et al. (CMS Collab.), Eur. Phys. J. C 72, 1945 (2012); arXiv: 1202.2554.

    Article  ADS  Google Scholar 

  39. J. Xu, J. Liao, and M. Gyulassy, Chin. Phys. Lett. 32, 092501 (2015); arXiv: 1411.3673.

    Article  ADS  Google Scholar 

  40. B. G. Zakharov, JETP Lett. 101, 587 (2015); arXiv: 1412.6287.

    Article  ADS  Google Scholar 

  41. J. Liao and E. Shuryak, Phys. Rev. C 75, 054907 (2007); arXiv: hep-ph/0611131.

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed at the Steklov Mathematical Institute and was supported by the Russian Science Foundation, project no. 20-12-00200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Zakharov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, B.G. Jet Quenching with T-Dependent Running Coupling. Jetp Lett. 112, 681–687 (2020). https://doi.org/10.1134/S0021364020230022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020230022

Navigation