Skip to main content
Log in

Scientific and Technological Foundations of Improvement of the Resource Efficiency of Electroflotation Recovery of Poorly Soluble Inorganic Compounds (Oxides, Carbides, Hydroxides) from Aqueous Electrolyte Solutions

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

Electroflotation was studied in the systems H2O–TiO2, H2O–Ti3N4, H2O–SiC, carbon material powders‒H2O, and some others. The degree of recovery in these systems did not exceed 10–20% for 30 min of flotation in the electrolytes NaCl and Na2SO4 over a wide pH range, which was due to the small particle size of the dispersed phase and the hydrophilic properties of the surface of the powders. Introduction of the coagulants FeCl3 and AlCl3 and compositions containing surfactants to the system intensified the flotation and increased the degree of recovery in the above systems to 90–96%. For the first time, the rate constants K for electroflotation processes were calculated for typical dependences α = f(τ). With taking into account the K values and the degrees of recovery, efficiency criteria for electroflotation processes were determined for five main groups. The results of this work are important for choosing a technology for treatment of liquid industrial waste containing titanium compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kolesnikov, V.A., Il’in, V.I., Brodskii, V.A., and Kolesnikov, A.V., Teor. Osn. Khim. Tekhnol., 2017, vol. 51, no. 4, pp. 361–375.

    Google Scholar 

  2. Ksenofontov, B.S., Antonova, E.S., Bondarenko, Kapitonova, S.N., and Yur’eva, O.A., Ekol. Prom. Proizv., 2015, vol. 89, no. 1, p. 36.

    Google Scholar 

  3. Kolesnikov, V.A., Brodsky, V.A., Perfileva, A.V., and Kolesnikov, A.V., Pure Appl. Chem., 2017, vol. 89, no. 10, p. 1535. https://doi.org/10.1515/pac-2016-1113

    Article  CAS  Google Scholar 

  4. Kolesnikov, A.V., Milyutina, A.D., Desyatov, A.V., and Kolesnikov, V.A., Sep. Purif. Technol., 2019, vol. 209, p. 73. https://doi.org/10.1016/j.seppur.2018.07.014

    Article  CAS  Google Scholar 

  5. Chen, G. and Hung, Y.T., Electrochemical Wastewater Treatment Processes, Wang, L.K., Hung Y.T., and Shammas, N.K., Eds., Advanced Physicochemical Treatment Technologies. Handbook of Environmental Engineering, vol. 5, Totowa, NJ: Humana Press Inc., 2007, pp. 57–106.

  6. Shulenina, Z.M., Bagrov, V.V., and Desyatov, A.V., Voda tekhnogennaya. Problemy, tekhnologii, resursnaya tsennost’ (Man-Made Water, Problems, Technology, Resource Value), Moscow: Izd. MGTU im. N. Baumana, 2015.

  7. Matis, K.A. and Peleka, E.N., Sep. Sci. Technol., 2010, vol. 45, no. 16, p. 2465.

    Article  CAS  Google Scholar 

  8. Sillanpää, M. and Shestakova, M., Electrochemical Water Treatment Methods: Fundamentals, Methods and Full Scale Applications, Butterworth-Heinemann, 2017, vol. 1, p. 310.

    Book  Google Scholar 

  9. Sarkar, S.K., Machniewski, P.M., and Evans, G.M., Chem. Proc. Eng.–Inz. Chem. Proc., 2013, vol. 34, no. 3, p. 327.

    CAS  Google Scholar 

  10. Binquan, J. and Jin, L., Res. J. Chem. Environ., 2011, vol. 15, no. 1, p. 59.

    Google Scholar 

  11. Chen, X. and Chen, G., Electroflotation Electrochemistry for the Environment, New York, Dordrecht, Heidelberg, London: Springer, 2010.

    Google Scholar 

  12. Matis, K.A., Flotation as a separation process, in: Water Encyclopedia, Lehr, J.H. and Keeley J., Eds., Wiley, 2015, vol. 1, pp. 684–688.

    Google Scholar 

  13. Martínez-Huitle, C.A., Rodrigo, M.A., and Scialdone, O., Electrochemical Water and Wastewater Treatment, Oxford: Butterworth-Heinemann, an imprint of Elsevier, 2018.

    Google Scholar 

  14. Ksenofontov, B.S., Ochistka stochnykh vod: kinetika flotatsii i flotokombainy (Purification of Wastewater: Flotation Kinetics and Flotation Processor), ID “Forum,” INFRA-M, 2020.

  15. Kozodaev, A.S., Taranov, R.A., Ksenofontov, B.S., Voropaeva, A.A., Vinogradov, M.S., Petrova, E.V., and Ivanov, M.V., Nauchn. Obozr., 2015, no. 24, pp. 128–138.

  16. Attour, A., Touati, M., Tlili, M., Ben Amor, M., Lapicque, F., and Leclerc, J.-P., Sep. Purif. Technol., 2014, vol. 123, pp. 124–129.

    Article  CAS  Google Scholar 

  17. Garcia-Segura, S., Eiband, M.M.S.G., de Melo, J.V., and Martinez-Huitle, C.A., J. Electroanal. Chem., 2017, vol. 801, pp. 267–299.

    Article  CAS  Google Scholar 

  18. Meshalkin, V.P., Kolesnikov, A.V., Savel’ev, D.S., Kolesnikov, V.A., Belozerskii, A.Y., Men’shova, I.I., Maslyannikova, D.V., and Sycheva, O.V., Dokl. Phys. Chem., 2019, vol. 486, part 2, pp. 83–86. https://doi.org/10.1134/S0012501619060034

    Article  CAS  Google Scholar 

  19. Meshalkin, V.P., Kolesnikov, V.A., Desyatov, A.V., Milyutina, A.D., and Kolesnikov, A.V., Dokl. Chem., 2017, vol. 476, part 1, pp. 219‒222. https://doi.org/10.1134/S001250081709004X

    Article  CAS  Google Scholar 

  20. Meshalkin, V.P., Kolesnikov, A.V., Milyutina, A.D., Desyatov, A.V., and Kolesnikov, V.A., Dokl. Chem., 2017, vol. 474, part 2, pp. 144–147. https://doi.org/10.1134/S0012500817060027

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental results presented in the tables and figures were obtained by the authors of this work at the Mendeleev University of Chemical Technology of Russia, Moscow, Russia.

Funding

This work was supported by the Mendeleev University of Chemical Technology of Russia, Moscow, Russia (project no. Z-2020-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnikov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.V., Meshalkin, V.P., Davydkova, T.V. et al. Scientific and Technological Foundations of Improvement of the Resource Efficiency of Electroflotation Recovery of Poorly Soluble Inorganic Compounds (Oxides, Carbides, Hydroxides) from Aqueous Electrolyte Solutions. Dokl Phys Chem 494, 133–138 (2020). https://doi.org/10.1134/S001250162009002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001250162009002X

Keywords:

Navigation