Skip to main content

Advertisement

Log in

Theoretical study of MgNa+ ionic system: potential energy curve, vibrational levels, dipole moments, radiative lifetimes and laser-cooling analysis

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

An extensive ab-initio quantum chemistry study and a discussion of the possible laser cooling and formation of the heteronuclear ionic MgNa+ molecule is presented in this paper. Our work is based on the use of non–empirical pseudo-potentials for the Mg2+ and Na+ cores, large Gaussian basis sets, parametrized l–dependent polarization potentials, and full valence configuration interaction calculations. We present here adiabatic potential energy curves of the ground and 44 low-lying excited electronic states of 1,3Σ+, 1,3Π, 1,3Δ symmetries, and their spectroscopic parameters (Re, De, Te, ωe, ωexe, and Be). Furthermore, numerous ionic – neutral avoided crossings, specially between higher adjacent electronic states of 1,3Σ+, 1,3Π symmetries, are identified and interpreted. The energy separations between these avoided crossings are also calculated. The electric dipole moment curves have been computed for a wide range of inter-nuclear distances. The vibrational energies are obtained by solving the nuclear Schrodinger equation, using the calculated potential energy curves. Thereafter, spontaneous and black-body radiation induced transition rates are calculated to obtain the ground and excited states vibrational level lifetimes. It has been observed that the lifetimes of the ground state vibrational levels are of the order of a second, while those of the excited states, mainly the 21Σ+ state, have the order of a nanosecond.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.K. Kim, P.S. Bagus, Phys. Rev. A 8, 1739 (1973).

    Article  ADS  Google Scholar 

  2. P. Hafner, W.H.E. Schwarz, J. Phys. B: At. Mol. Phys 11, 217 (1978).

    Article  ADS  Google Scholar 

  3. P. Fuentealba, O. Reyes, Mol. Phys 62, 1291 (1987).

    Article  ADS  Google Scholar 

  4. H. Katori, T. Ido, Y. Isoya, M. Kuwata-Gonokami, Phys. Rev Lett. 82, 1116 (1999).

    Article  ADS  Google Scholar 

  5. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, W. Phys, Rev. Lett. 87, 123002 (2001)–1.

    Article  ADS  Google Scholar 

  6. E.A. Curtis, C.W. Oates, L. Hollberg, Phys. Rev. A 64, 031403 (2001)–1.

    Article  ADS  Google Scholar 

  7. E.A. Curtis, C.W. Oates, L.J. Hollberg, Opt. Soc. Am. B. 20, 977 (2003).

    Article  ADS  Google Scholar 

  8. J. Grünert, A. Hemmerich, Phys. Rev. A 65, 041401 (2002)–1.

    Article  ADS  Google Scholar 

  9. D.P. Hansen, J.R. Mohr, A. Hemmerich, Phys. Rev. A 67, 021401 (2003).

    Article  ADS  Google Scholar 

  10. Y. Takasu, K. Honda, K. Komori, T. Kuwamoto, M. Kumakura, Y. Takahashi, T. Yabuzaki, Phys. Rev. Lett. 90, 023003–1 (2003).

    Article  ADS  Google Scholar 

  11. T.H. Loftus, T. Ido, A.D. Ludlow, M.M. Boyd, J. Ye, Phys. Rev. Lett. 93, 073003–1 (2004).

    Article  ADS  Google Scholar 

  12. N. Poli, R.E. Drullinger, G. Ferrari, J. Léonard, F. Sorrentino, G.M. Tino, Phys. Rev. A 71, 061403–1 (2005).

    Article  ADS  Google Scholar 

  13. S.A. Diddams, J.C. Bergquist, S.R. Jefferts, C.M. Oates, Science 306, 1318 (2004).

    Article  ADS  Google Scholar 

  14. A. Clairon, S. Ghezali, G. Santarelli, P. Laurent, S.N. Lea, E. Simon, S. Weyers, K. Szymaniec, Preliminary Evaluation of a Cesium Fountain Frequency Standard, in Procedings of the Fifth Symposium on Frequency Standards and Metrology, edited by J.C. Bergquist (World Scientic Publ, Singapore, 1996), pp. 49–59.

  15. J. Weiner, V.S. Bagnato, S. Zillo, P.S. Julienne, Rev. Mod. Phys. 71, 1 (1999).

    Article  ADS  Google Scholar 

  16. K. Burnett, P.S. Julienne, P.D. Lett, E. Tiesinga, C.J. Williams, Nature 416, 225 (2002).

    Article  ADS  Google Scholar 

  17. J. Anglin, W. Ketterle, Nature 416, 211 (2002).

    Article  ADS  Google Scholar 

  18. A.T. Grier, M. Cetina, F. Oruccevic, Phys. Rev. Lett. 102, 223201 (2002).

    Article  ADS  Google Scholar 

  19. F.H. Hall, P. Eberle, G. Hegi, M. Raoult, M. Aymar, O. Dulieu, S. Willitsch, Mol. Phys. 111, 2020 (2013).

    Article  ADS  Google Scholar 

  20. S.T. Sullivan, W.G. Rellergert, S. Kotochigova, E.R. Hudson, Phys. Rev. Lett. 109, 223002 (2012).

    Article  ADS  Google Scholar 

  21. W.G. Rellergert, S.T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S.J. Schowalter, E.R. Hudson, Phys. Rev. Lett. 107, 243201 (2011).

    Article  ADS  Google Scholar 

  22. C. Zipkes, S. Palzer, C. Sias, M. Kohl, Nature 464, 388 (2010).

    Article  ADS  Google Scholar 

  23. S. Haze, S. Hata, M. Fujinaga, T. Mukaiyama, Phys. Rev. A 87, 052715 (2013).

    Article  ADS  Google Scholar 

  24. F.H.J. Hall, M. Aymar, N. Bouloufa-Maafa, O. Dulieu, S. Willitsch, Phys. Rev. Lett. 107, 243202 (2011).

    Article  ADS  Google Scholar 

  25. W. Smith, D. Goodman, I. Sivarajah, J. Wells, S. Banerjee, R. Côté, H. Michels, J.A. Mongtomery, F. Narducci, Appl. Phys. B 114, 75 (2014).

    Article  ADS  Google Scholar 

  26. Z. Meir, T. Sikorsky, R. Ben-shlomi, N. Akerman, Y. Dallal, R. Ozeri, Phys. Rev. Lett. 117, 243401 (2016).

    Article  ADS  Google Scholar 

  27. H. Fürst, T. Feldker, N.V. Ewald, J. Joger, M. Tomza, R. Gerritsma, Phys. Rev. A 98, 012713 (2018).

    Article  ADS  Google Scholar 

  28. S. Jyothi, K.N. Egodapitiya, B. Bondurant, Z. Jia, E. Pretzsch, P. Chiappina, G. Shu, K.R. Brown, Rev. Sci. Instrum. 90, 103201 (2019).

    Article  ADS  Google Scholar 

  29. J. Schmidt, P. Weckesser, F. Thielemann, T. Schaetz, L. Karpa, Phys. Rev. Lett. 124, 053402 (2020).

    Article  ADS  Google Scholar 

  30. K. Ravi, S. Lee, A. Sharma, G. Werth, S. Rangwala, Nat. Commun. 3, 1126 (2012).

    Article  ADS  Google Scholar 

  31. A. Härter, A. Krükow, A. Brunner, W. Schnitzler, S. Schmid, J. Hecker Denschlag, Phys. Rev. Lett. 109, 123201 (2012).

    Article  ADS  Google Scholar 

  32. S. Jyothi, T. Ray, S. Dutta, A.R. Allouche, R. Vexiau, O. Dulieu, S.A. Rangwala, Phys. Rev. Lett. 117, 213002 (2016).

    Article  ADS  Google Scholar 

  33. F.H. Hall, M. Aymar, M. Raoult, O. Dulieu, S. Willitsch, Mol. Phys. 111, 1683 (2013).

    Article  ADS  Google Scholar 

  34. S.T. Sullivan, W.G. Rellergert, S. Kotochigova, K. Chen, S.J. Schowalter, E.R. Hudson, Phys. Chem. Chem. Phys. 13, 18859 (2011).

    Article  Google Scholar 

  35. K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, Rev. Mod. Phys. 82, 2609 (2010).

    Article  ADS  Google Scholar 

  36. C. Schneider, D. Porras, T. Schaetz, Rep. Prog. Phys. 75, 024401 (2012).

    Article  ADS  Google Scholar 

  37. Z. Idziaszek, A. Simoni, T. Calarco, P.S. Julienne, New J. Phys. 13, 083005 (2011).

    Article  ADS  Google Scholar 

  38. M. Tomza, C.P. Koch, R. Moszynski, Phys. Rev. A 91, 042706 (2015).

    Article  ADS  Google Scholar 

  39. M. Farjallah, D. Sardar, N. El-Kork, B. Deb, H. Berriche, J. Phys. B: At. Mol. Opt. Phys. 52, 045201 (2019).

    Article  ADS  Google Scholar 

  40. M. Gacesa, J.A. Montgomery, H.H. Michels, R. Côté, Phys. Rev. A 94, 013407 (2016).

    Article  ADS  Google Scholar 

  41. A. Petrov, C. Makrides, S. Kotochigova, J. Chem. Phys. 146, 084304 (2017).

    Article  ADS  Google Scholar 

  42. H. da Silva Jr., M. Raoult, M. Aymar, O. Dulieu, New J. Phys. 17, 045015 (2015).

    Article  ADS  Google Scholar 

  43. W. Zrafi, H. Ladjimi, H. Said, H. Berriche, M. Tomza, New J. Phys. 22, 073015 (2020).

    Article  ADS  Google Scholar 

  44. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002).

    Article  ADS  Google Scholar 

  45. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R.S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S.A. Diddams, Science 303, 1843 (2004).

    Article  ADS  Google Scholar 

  46. F.L. Hong, M. Takamoto, R. Higashi, Y. Fukuyama, J. Jiang, H. Katori, Opt. Express 13, 5253 (2005).

    Article  ADS  Google Scholar 

  47. T. Ido, T.H. Loftus, M.M. Boyd, A.D. Ludlow, K.W. Holman, Phys. Rev. Lett. 94, 153001 (2005)–1.

    Article  ADS  Google Scholar 

  48. H. Marion, D.S.F. Pereira, M. Abgrall, S. Zhang, Y. Sortais, S. Bize, I. Maksimovic, D. Calonico, J. Grünert, C. Mandache, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon, Phys. Rev. Lett. 90, 150801 (2003)–1.

    Article  ADS  Google Scholar 

  49. A. Bauch, Sci. Technol. 14, 1159 (2003).

    ADS  Google Scholar 

  50. U.J. Sofia, D. Fabian, J.C. Howk, Astrophys. J. 531, 384 (2000).

    Article  ADS  Google Scholar 

  51. U.J. Sofia, J.A. Cardelli, B.D. Savage, Astrophys. J. 430, 650 (1994).

    Article  ADS  Google Scholar 

  52. S. Majumder, H. Merlitz, G. Gopakumar, B.P. Das, U.S. Mahapatra, D. Mukherjee, J. Astrophys. 574, 513 (2002).

    Article  ADS  Google Scholar 

  53. K. Højbjerre, A.K. Hansen, P.S. Skyt, P.F. Staanum, M. Drewsen, New J. Phys. 11, 055026 (2009)–1.

    Article  ADS  Google Scholar 

  54. N.B. Balabanov, K.A. Peterson, J. Chem. Phys. 123, 064107 (2005).

    Article  ADS  Google Scholar 

  55. R.E. Olson, B. Liu, Phys. Rev. A 20, 1366 (1979).

    Article  ADS  Google Scholar 

  56. R.W. Numrich, D.G. Truhlar, J. Phys. Chem. 79, 2745 (1975).

    Article  Google Scholar 

  57. T.S. Monteiro, G. Danby, L.I. Cooper, A.S. Dickinson, E.L. Lewis, J. Phys. B: At. Mol. Opt. Phys. 21, 4165 (1988).

    Article  ADS  Google Scholar 

  58. J.C. Garcia-Madroñal, O. Mò, I.L. Cooper, A.S. Dickinson, J. Mol. Struct. THEOCHEM 260, 63 (1992).

    Article  Google Scholar 

  59. M. Abe, M. Kajita, M. Hada, Y. Moriwaki, J. Phys. B: At. Mol. Opt. Phys. 43, 245102 (2010).

    Article  ADS  Google Scholar 

  60. S. Jørgensen, M. Drewsen, R. Kosloff, J. Chem. Phys. 123, 094302 (2005)–1.

    Article  ADS  Google Scholar 

  61. A.I. Boldyrev, J. Simons, P.V.R. Schleyer, J. Chem. Phys. 99, 8793 (1993).

    Article  ADS  Google Scholar 

  62. P. Pyykkö, Mol. Phys. 67, 871 (1989).

    Article  ADS  Google Scholar 

  63. Y. Gao, T. Gao, Mol. Phys. 112, 3015 (2014).

    Article  ADS  Google Scholar 

  64. R. ElOualhazi, H. Berriche, J. Phys. Chem. A 120, 452 (2016).

    Article  Google Scholar 

  65. S.D. Peyerimhoff, J. Chem. Soc. 19, 63 (1984).

    Google Scholar 

  66. P.J. Bruna, in Advances Chemical Physics – volume LXVII, edited by K.P. Lawley (Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada, 1987), pp. 1–97.

  67. R.J. Buenker, S.D. Peyerimhoff, New Horizons of Quantum Chemistry, 183 (1983)–219.

  68. R.J. Buenker, S.D. Peyerimhoff, W.J. Butscher, Mol. Phys. 35, 771 (1983).

    Article  ADS  Google Scholar 

  69. R.J. Buenker, S.D. Peyerimhoff, Theor. Chim. Acta 39, 217 (1975).

    Article  Google Scholar 

  70. R.J. Buenker, S.D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974).

    Article  Google Scholar 

  71. R.J. Buenker, in Proceeding of the Workshop on Molecular Physics and Quantum Chemistry into the 80’s, edited by P.G. Burton (University of Wollongong, Wollongong, Australia, 1980), p. pp. 1.5.1–1.5.9.

  72. R.J. Buenker, Phys. Theor. Chem. 21, 17 (1982).

    Google Scholar 

  73. D.A. Fedorov, D.K. Barnes, S.A. Varganova, J. Chem. Phys. 147, 124304 (2017).

    Article  ADS  Google Scholar 

  74. M. Smialkowski, M. Tomza, Phys. Rev. A 101, 012501 (2020).

    Article  ADS  Google Scholar 

  75. R. Bala, H.S. Nataraj, M. Abe, M. Kajita, J. Mol. Phys. 117, 712 (2018).

    Article  ADS  Google Scholar 

  76. H. Berriche, Ph.D. thesis, Paul Sabatier University, Toulouse, France, 1995.

  77. N. Mabrouk, H. Berriche, J. Phys. B: At., Mol. Opt. Phys. 41, 155101–1 (2008).

    Article  ADS  Google Scholar 

  78. M. Farjallah, C. Ghanmi, H. Berriche, Eur. Phys. J. D 67, 245 (2013).

    Article  ADS  Google Scholar 

  79. P. Durand, J.C. Barthelat, Chem. Phys. Lett. 27, 191 (1974).

    Article  ADS  Google Scholar 

  80. P. Durand, J.C. Barthelat, Theor. Chim. Acta 38, 283 (1975).

    Article  Google Scholar 

  81. W. Müller, J. Flesch, W. Meyer, J. Chem. Phys 80, 3297 (1984).

    Article  ADS  Google Scholar 

  82. M. Foucrault, P. Millié, J.P. Daudey, J. Chem. Phys 96, 1257 (1992).

    Article  ADS  Google Scholar 

  83. S. Magnier, P. Millie, O. Dulieu, E. Masnou-Seeuws, J. Chem. Phys 98, 7113 (1993).

    Article  ADS  Google Scholar 

  84. M. Aymar, R. Guérout, M. Sahlaoui, O. Dulieu, J. Phys. B: At. Mol. Opt. Phys. 42, 154025 (2009).

    Article  ADS  Google Scholar 

  85. C.E. Moore, Atomic Energy Levels, NSRDS–NBS No. 467 (US Government Printing Office, Washington, DC, 1989).

  86. J. Mitroy, J.Y. Zhang, Eur. Phys. J. D 46, 415 (2008).

    Article  ADS  Google Scholar 

  87. H. Croft, A.S. Dickinson, F.X. Gadea, J. Phys, J. Phys. B: At., Mol., Opt. Phys. 32, 5451 (1999).

    Article  ADS  Google Scholar 

  88. P.S. Barklem, A.K. Belyaev, M. Asplund, Astron. Astrophys 409, L1 (2003).

    Article  ADS  Google Scholar 

  89. C.W. Bauschlicher Jr, S.R. Langhoff, Partridge. Chem. Phys 96, 1240 (1992).

    ADS  Google Scholar 

  90. W.T. Zemke, J.B. Crooks, W.C. Stwalley, J. Chem. Phys. 68, 4628 (1978).

    Article  ADS  Google Scholar 

  91. W.T. Zemke, W.C. Stwalley, J. Chem. Phys. 73, 5584 (1980).

    Article  ADS  Google Scholar 

  92. H. Partridge, S.R. Langhoff, J. Chem. Phys. 74, 2361 (1981).

    Article  ADS  Google Scholar 

  93. A.V. Stolyarov, V.I. Pupyshev, Phys. Rev. A 49, 1693 (1994).

    Article  ADS  Google Scholar 

  94. E.A. Pazyuk, A.V. Stolyarov, V.I. Pupyshev, Chem. Phys. Lett. 228, 219 (1994).

    Article  ADS  Google Scholar 

  95. N. Mabrouk, H. Berriche, Russ. J. Phys. Chem. 91, 1474 (2017).

    Article  Google Scholar 

  96. H. Berriche, F. Gadéa, Eur. Phys. J. D. 70, 2 (2016).

    Article  ADS  Google Scholar 

  97. S. Kang, Y. Gao, F. Kuang, T. Gao, J. Du, G. Jiang, Phys. Rev. A 91, 042511 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Berriche.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjd/e2020-10291-4.

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Suplementary material

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farjallah, M., El-Korek, N., Korek, M. et al. Theoretical study of MgNa+ ionic system: potential energy curve, vibrational levels, dipole moments, radiative lifetimes and laser-cooling analysis. Eur. Phys. J. D 74, 234 (2020). https://doi.org/10.1140/epjd/e2020-10291-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10291-4

Keywords

Navigation