Skip to main content
Log in

Improved Electron Transport in Ambipolar Organic Field-Effect Transistors with PMMA/Polyurethane Blend Dielectrics

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We report improved electron transport in solution-processed ambipolar organic field-effect transistors (OFETs) employing polymer dielectric blends of low-k poly(methyl methacrylate) (PMMA) and polyurethane (PU) elastomer. Ambipolar poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) OFETs typically showed an unbalanced hole and electron mobilities of 8.7 ± 0.4 × 10−4 and 2.0±0.1 × 10−4cm2V−1V−1 respectively, using neat PMMA gate dielectric. By controlling the blending ratio of PU (0∼50 v%) in the PMMA-PU blend dielectrics, we tuned the charge carrier transport in the F8BT OFETs. The electron mobility gradually increases significantly, resulting in nearly perfect ambipolar characteristics with hole and electron mobilities of 6.0 ± 0.7 × 10−4 and 9.7 ± 0.4 × 10−4 cm2V−1V−1 respectively in PMMA: PU blend of 50:50 v%. The remarkable trend ensues from trapping of hole carriers at the dielectric/semiconductor by the -N-H- and carbonyl group (C=O) interface dipoles in the PU dielectric. The PMMA-PU blend dielectrics demonstrate excellent potentials for high-performance ambipolar OFETs, inverters, and complementary circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Wang, W. Huang, L. Chi, M. A.-H. T. J. Marks, and A. Facchetti, Chem. Rev., 118, 5690 (2018).

    Article  CAS  Google Scholar 

  2. S. Kim, J. Lee, and H. Han, Macromol. Res., 28, 896 (2020).

    Article  CAS  Google Scholar 

  3. B. Nketia-Yawson and Y.-Y. Noh, Adv. Funct. Mater., 28, 1802201 (2018).

    Article  Google Scholar 

  4. H. Zhu, E.-S. Shin, A. Liu, D. Ji, Y. Xu, and Y.-Y. Noh, Adv. Funct. Mater., 1904588 (2019).

  5. J. Kim, H.-T. Jung, S. Ha, M. Yi, J. Park, H. Kim, Y. Choi, and S. Pyo, Macromol. Res., 17, 646 (2009).

    Article  CAS  Google Scholar 

  6. U. Kraft, M. Sejfic, M. Jin Kang, K. Takimiya, T. Zaki, F. Letzkus, J. N. Burghartz, E. Weber, and Hagen Klauk, Adv. Mater., 27, 207 (2015).

    Article  CAS  Google Scholar 

  7. J. Liu, D. B. Buchholz, R. P. H. Chang, A. Facchetti, and T. J. Marks, Adv. Mater., 22, 2333 (2010).

    Article  CAS  Google Scholar 

  8. S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. P. Zhang, T. P. Lodge, and C. D. Frisbie, Adv. Mater., 25, 1822 (2013).

    Article  CAS  Google Scholar 

  9. X. Wu, J. Huang, S. Yu, P. Ruan, R. Sun, and C.-P. Wong, Macromol. Res., 28, 373 (2020).

    Article  CAS  Google Scholar 

  10. A. A. Higazy, H. Afifi, A. H. Khafagy, M. A. El-Shahawy, and A. M. Mansourc, Ultrasonics, 44, e1439 (2006).

    Article  Google Scholar 

  11. J. Seo, S. Oh, G. Choi, H. H. Choi, and H. S. Lee, Macromol. Res., 28, 670 (2020).

    Article  CAS  Google Scholar 

  12. X. Hou, S. C. Ng, J. Zhang, and J. S. Chang, Org. Electron., 17, 247 (2015).

    Article  CAS  Google Scholar 

  13. S.-W. Jung, S.-M. Yoon, S. Y. Kang, I.-K. You, J. B. Koo, K.-J. Baeg, and Y.-Y. Noh, Curr. Appl. Phys., 11, S213 (2011).

    Google Scholar 

  14. E.-Y. Shin, H. J. Cho, S. Jung, C. Yang, and Y.-Y. Noh, Adv. Funct. Mater., 28, 1704780 (2018).

    Article  Google Scholar 

  15. K.-J. Baeg, D. Khim, S.-W. Jung, M. Kang, I.-K. You, D.-Y. Kim, A. Facchetti, and Y.-Y. Noh, Adv. Mater., 24, 5433 (2012).

    Article  CAS  Google Scholar 

  16. K.-J. Baeg, D. Khim, J. Kim, H. Han, S.-W. Jung, T.-W. Kim, M. Kang, A. Facchetti, S.-K. Hong, D.-Y. Kim, and Y.-Y. Noh, ACS Appl. Mater. Interfaces, 4, 6176 (2012).

    Article  CAS  Google Scholar 

  17. B. Nketia-Yawson, S.-J. Kang, G.D. Tabi, A. Perinot, M. Caironi, A. Facchetti, and Y.-Y. Noh, Adv. Mater., 29, 1605685 (2017).

    Article  Google Scholar 

  18. S. H. Kim, K. Hong, M. Jang, J. Jang, J. E. Anthony, H. Yang, and C. E. Park, Adv. Mater., 22, 4809 (2010).

    Article  CAS  Google Scholar 

  19. P. S. O. Patricio, J.A. de Sales, G.G. Silva, D. Windmoller, and J.C. Machado, J. Membr. Sci., 271, 177 (2006).

    Article  CAS  Google Scholar 

  20. S. Fu, J. Zhu, and S. Chen, Macromol. Res., 26, 1035 (2018).

    Article  CAS  Google Scholar 

  21. C.-A. Xu, M. Lu, K. Wu, and J. Shi, Macromol. Res., 28, 1032 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (NRF-2020R1G1A1011577, 2013M3A6A5073183, and 2014M3A6A5060932).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin Nketia-Yawson or Young-Yong Noh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabi, G.D., Nketia-Yawson, B., Jo, J.W. et al. Improved Electron Transport in Ambipolar Organic Field-Effect Transistors with PMMA/Polyurethane Blend Dielectrics. Macromol. Res. 28 (Suppl 1), 1248–1252 (2020). https://doi.org/10.1007/s13233-020-8161-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8161-6

Keywords

Navigation