Skip to main content
Log in

A review on graphene-based materials as versatile cancer biomarker sensors

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Early detection of cancer has multitude of advantages like early diagnosis, reduced risk, ease in the treatment and follow up of recurrence. New and developed techniques are always under research to control the spreading malignancy. Graphene is an emerging star in biomedical field as it exhibits exceptional thermal, electrical and optical properties. Here, we review application of graphene-based materials in developing biosensing devices for the detection of different cancer biomarkers at concentrations down to sub-toxic levels. Different analytical methodologies chosen for sensing have been undertaken and their performance and background have been discussed. The trend of use of these methodologies can also be perceived from the graphical data presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akinwande D, Brennan C J, Bunch J S, et al. A review on mechanics and mechanical properties of 2D materials — Graphene and beyond. Extreme Mechanics Letters, 2017, 13: 42–77

    Google Scholar 

  2. Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48(8): 2127–2150

    CAS  Google Scholar 

  3. Shareena T P D, McShan D, Dasmahapatra A K, et al. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Letters, 2018, 10 (3): 53

    Google Scholar 

  4. Cobas E, Friedman A L, Van’t Erve O M, et al. Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Letters, 2012, 12(6): 3000–3004

    CAS  Google Scholar 

  5. Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011, 10(6): 424–428

    CAS  Google Scholar 

  6. Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene. Journal of Materials Chemistry, 2010, 20(12): 2277–2289

    CAS  Google Scholar 

  7. Tsoukleri G, Parthenios J, Papagelis K, et al. Subjecting a graphene monolayer to tension and compression. Small, 2009, 5 (21): 2397–2402

    CAS  Google Scholar 

  8. Eftekhari A, Jafarkhani P. Curly graphene with specious interlayers displaying superior capacity for hydrogen storage. The Journal of Physical Chemistry C, 2013, 117(48): 25845–25851

    CAS  Google Scholar 

  9. Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin, 2012, 37(12): 1273–1281

    CAS  Google Scholar 

  10. Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162

    CAS  Google Scholar 

  11. Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 2008, 3(4): 206–209

    CAS  Google Scholar 

  12. Bunch J S. Mechanical and Electrical Properties of Graphene Sheets. Ithaca, NY: Cornell University, 2008

    Google Scholar 

  13. Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694

    CAS  Google Scholar 

  14. Plutnar J, Pumera M, Sofer Z. The chemistry of CVD graphene. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(23): 6082–6101

    CAS  Google Scholar 

  15. Shu H, Tao X M, Ding F. What are the active carbon species during graphene chemical vapor deposition growth? Nanoscale, 2015, 7(5): 1627–1634

    CAS  Google Scholar 

  16. Jin Z, McNicholas T P, Shih C J, et al. Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chemistry of Materials, 2011, 23(14): 3362–3370

    CAS  Google Scholar 

  17. Park S, Ruoff R S. Chemical methods for the production of graphenes. Nature Nanotechnology, 2009, 4(4): 217–224

    CAS  Google Scholar 

  18. Withers F, Bointon T H, Craciun M F, et al. All-graphene photodetectors. ACS Nano, 2013, 7(6): 5052–5057

    CAS  Google Scholar 

  19. Fowler J D, Allen M J, Tung V C, et al. Practical chemical sensors from chemically derived graphene. ACS Nano, 2009, 3 (2): 301–306

    CAS  Google Scholar 

  20. Zhu S E, Shabani R, Rho J, et al. Graphene-based bimorph microactuators. Nano Letters, 2011, 11(3): 977–981

    CAS  Google Scholar 

  21. Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews, 2015, 44(10): 2963–2997

    CAS  Google Scholar 

  22. Wang B, Akiba U, Anzai J I. Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review. Molecules, 2017, 22(7): 1048

    Google Scholar 

  23. Malhotra B D, Kumar S, Pandey C M. Nanomaterials based biosensors for cancer biomarker detection. Journal of Physics Conference Series, 2016, 704: 012011

    Google Scholar 

  24. Pasinszki T, Krebsz M, Tung T T, et al. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors, 2017, 17(8): 1919

    Google Scholar 

  25. Rauf S, Mishra G K, Azhar J, et al. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Analytical Biochemistry, 2018, 545: 13–19

    CAS  Google Scholar 

  26. Yadegari A, Omidi M, Yazdian F, et al. An electrochemical cytosensor for ultrasensitive detection of cancer cells using modified graphene-gold nanostructures. RSC Advances, 2017, 7 (4): 2365–2372

    CAS  Google Scholar 

  27. Ravalli A, Voccia D, Palchetti I, et al. Electrochemical, electrochemiluminescence, and photoelectrochemical aptamer-based nanostructured sensors for biomarker analysis. Biosensors, 2016, 6(3): 39

    Google Scholar 

  28. Kumar V, Srivastava S, Umrao S, et al. Nanostructured palladium-reduced graphene oxide platform for high sensitive, label free detection of a cancer biomarker. RSC Advances, 2014, 4(5): 2267–2273

    CAS  Google Scholar 

  29. Gazze A, Ademefun R, Conlan R S, et al. Electrochemical impedence spectroscopy enabled CA125 detection; toward early ovarian cancer diagnosis using graphene biosensors. Journal of Interdisciplinary Nanomedicine, 2018, 3(2): 82–88

    CAS  Google Scholar 

  30. Dong W, Ren Y, Bai Z, et al. Trimetallic AuPtPd nanocomposites platform on graphene: Applied to electrochemical detection and breast cancer diagnosis. Talanta, 2018, 189: 79–85

    CAS  Google Scholar 

  31. Ali M A, Mondal K, Jiao Y, et al. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Applied Materials & Interfaces, 2016, 8(32): 20570–20582

    CAS  Google Scholar 

  32. Hassanpour S, Hasanzadeh M, Saadati A, et al. A novel paper based immunoassay of breast cancer specific carbohydrate (CA 15.3) using silver nanoparticles-reduced graphene oxide nanoink technology: A new platform to construction of microfluidic paper-based analytical devices (µPADs) towards biomedical analysis. Microchemical Journal, 2019, 146: 345–358

    CAS  Google Scholar 

  33. Gugoasa L A, AĺOgaidi A J M, Stefan-van Staden R I, et al. Multimode microsensors based on Ag-TiO2-graphene materials used for the molecular recognition of carcinoembryonic antigen in whole blood samples. RSC Advances, 2017, 7(45): 28419–28426

    CAS  Google Scholar 

  34. Wang Y, Luo J, Liu J, et al. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosensors & Bioelectronics, 2019, 136: 84–90

    CAS  Google Scholar 

  35. Ali M A, Tabassum S, Wang Q, et al. Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal. Lab on a Chip, 2018, 18(5): 803–817

    CAS  Google Scholar 

  36. Abdurhman A A M, Zhang Y, Zhang G, et al. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells. Analytical and Bioanalytical Chemistry, 2015, 407(26): 8129–8136

    CAS  Google Scholar 

  37. Zhang Y, Xiao J, Lv Q, et al. In situ electrochemical sensing and real-time monitoring live cells based on freestanding nanohybrid paper electrode assembled from 3D functionalized graphene framework. ACS Applied Materials & Interfaces, 2017, 9(44): 38201–38210

    CAS  Google Scholar 

  38. Li C, Qiu X, Deng K, et al. Electrochemical co-reduction synthesis of Au/ferrocene-graphene nanocomposites and their application in an electrochemical immunosensor of a breast cancer biomarker. Analytical Methods, 2014, 6(22): 9078–9084

    CAS  Google Scholar 

  39. Saeed A A, Sánchez J L A, O’Sullivan C K, et al. DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry, 2017, 118: 91–99

    CAS  Google Scholar 

  40. Gao Y S, Zhu X F, Yang T T, et al. Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers. Microchimica Acta, 2015, 182(11–12): 2027–2035

    CAS  Google Scholar 

  41. Chen H, Zhang B, Cui Y, et al. One-step electrochemical immunoassay of biomarker based on nanogold-functionalized graphene sensing platform. Analytical Methods, 2011, 3(7): 1615–1621

    CAS  Google Scholar 

  42. Li H, Qin J, Li M, et al. Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor. Sensors and Actuators B: Chemical, 2020, 302: 127209

    CAS  Google Scholar 

  43. Chen X, Jia X, Han J, et al. Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosensors & Bioelectronics, 2013, 50: 356–361

    CAS  Google Scholar 

  44. Zhang Q, Zhao Q, Fu M, et al. Carbon quantum dots encapsulated in super small platinum nanocrystals core-shell architecture/nitrogen doped graphene hybrid nanocomposite for electrochemical biosensing of DNA damage biomarker-8-hydroxy-2′-deoxyguanosine. Analytica Chimica Acta, 2019, 1047: 9–20

    CAS  Google Scholar 

  45. Amani J, Khoshroo A, Rahimi-Nasrabadi M. Electrochemical immunosensor for the breast cancer marker CA 15-3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol. Microchimica Acta, 2018, 185(1): 79

    Google Scholar 

  46. Rostamabadi P F, Heydari-Bafrooei E. Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchimica Acta, 2019, 186 (8): 495

    Google Scholar 

  47. Rajaji U, Muthumariyappan A, Chen S M, et al. A novel electrochemical sensor for the detection of oxidative stress and cancer biomarker (4-nitroquinoline N-oxide) based on iron nitride nanoparticles with multilayer reduced graphene nanosheets modified electrode. Sensors and Actuators B: Chemical, 2019, 291: 120–129

    CAS  Google Scholar 

  48. Sharafeldin M, Bishop G W, Bhakta S, et al. Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosensors & Bioelectronics, 2017, 91: 359–366

    CAS  Google Scholar 

  49. Li Q, Tang D, Lou F, et al. Simultaneous electrochemical multiplexed immunoassay of biomarkers based on multifunctionalized graphene nanotags. ChemElectroChem, 2014, 1(2): 441–447

    Google Scholar 

  50. Roberts A, Tripathi P P, Gandhi S. Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-A biomarker of cancer. Biosensors & Bioelectronics, 2019, 141: 111398

    CAS  Google Scholar 

  51. Tan Z, Cao L, Yang Y, et al. Amperometric immunoassay for the carcinoembryonic antigen by using a peroxidase mimic consisting of palladium nanospheres functionalized with glutathionecapped gold nanoparticles on graphene oxide. Microchimica Acta, 2019, 186(11): 693

    CAS  Google Scholar 

  52. Wu Y, Xue P, Kang Y, et al. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Analytical Chemistry, 2013, 85(18): 8661–8668

    CAS  Google Scholar 

  53. Wu Y, Xue P, Kang Y, et al. Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Analytical Chemistry, 2013, 85(6): 3166–3173

    CAS  Google Scholar 

  54. Yang K, Qi L, Gao Z, et al. A novel electrochemical immunosensor for prostate-specific antigen based on noncovalent nanocomposite of ferrocene monocarboxylic acid with graphene oxide. Analytical Letters, 2014, 47(13): 2266–2280

    CAS  Google Scholar 

  55. Qu F, Li T, Yang M. Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosensors & Bioelectronics, 2011, 26(9): 3927–3931

    CAS  Google Scholar 

  56. Jonous Z A, Shayeh J S, Yazdian F, et al. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide-gold nanostructures. Engineering in Life Sciences, 2019, 19(3): 206–216

    Google Scholar 

  57. Alarfaj N A, El-Tohamy M F. A label-free electrochemical immunosensor based on gold nanoparticles and graphene oxide for the detection of tumor marker calcitonin. New Journal of Chemistry, 2017, 41(19): 11029–11035

    CAS  Google Scholar 

  58. Azimzadeh M, Rahaie M, Nasirizadeh N, et al. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors & Bioelectronics, 2016, 77: 99–106

    CAS  Google Scholar 

  59. Park S, Singh A, Kim S, et al. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes. Analytical Chemistry, 2014, 86(3): 1560–1566

    CAS  Google Scholar 

  60. Pan L H, Kuo S H, Lin T Y, et al. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosensors & Bioelectronics, 2017, 89(Pt 1): 598–605

    CAS  Google Scholar 

  61. Pothipor C, Wiriyakun N, Putnin T, et al. Highly sensitive biosensors based on graphene-poly (3-aminobenzoic acid) modified electrodes and porous-hollowed-silver-gold nanoparticle labelling for prostate cancer detection. Sensors and Actuators B: Chemical, 2019, 296: 126657

    Google Scholar 

  62. Shekari Z, Zare H R, Falahati A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchimica Acta, 2019, 186(8): 530

    Google Scholar 

  63. Imran H, Manikandan P N, Prabhu D, et al. Ultra selective label free electrochemical detection of cancer prognostic p53-antibody at DNA functionalized graphene. Sensing and Bio-Sensing Research, 2019, 23: 100261

    Google Scholar 

  64. Jin B, Wang P, Mao H, et al. Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers. Biosensors & Bioelectronics, 2014, 55: 464–469

    CAS  Google Scholar 

  65. Kilic T, Erdem A, Erac Y, et al. Electrochemical detection of a cancer biomarker mir-21 in cell lysates using graphene modified sensors. Electroanalysis, 2015, 27(2): 317–326

    CAS  Google Scholar 

  66. Wang R, Xue C. A sensitive electrochemical immunosensor for alpha-fetoprotein based on covalently incorporating a biorecognition element onto a graphene modified electrode via diazonium chemistry. Analytical Methods, 2013, 5(19): 5195–5200

    CAS  Google Scholar 

  67. Yang M, Javadi A, Li H, et al. Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet. Biosensors & Bioelectronics, 2010, 26(2): 560–565

    CAS  Google Scholar 

  68. Du D, Zou Z, Shin Y, et al. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Analytical Chemistry, 2010, 82(7): 2989–2995

    CAS  Google Scholar 

  69. Lin C W, Wei K C, Liao S S, et al. A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosensors & Bioelectronics, 2015, 67: 431–437

    CAS  Google Scholar 

  70. Ali M A, Singh C, Srivastava S, et al. Graphene oxide-metal nanocomposites for cancer biomarker detection. RSC Advances, 2017, 7(57): 35982–35991

    CAS  Google Scholar 

  71. Pachauri N, Dave K, Dinda A, et al. Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(19): 3000–3012

    CAS  Google Scholar 

  72. Salahandish R, Ghaffarinejad A, Omidinia E, et al. Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosensors & Bioelectronics, 2018, 120: 129–136

    CAS  Google Scholar 

  73. Xi J, Xie C, Zhang Y, et al. Pd nanoparticles decorated N-doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Applied Materials & Interfaces, 2016, 8(34): 22563–22573

    CAS  Google Scholar 

  74. Li H, He J, Li S, et al. Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. Biosensors & Bioelectronics, 2013, 43: 25–29

    Google Scholar 

  75. Yang L, Zhen S J, Li Y F, et al. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker. Nanoscale, 2018, 10(25): 11942–11947

    CAS  Google Scholar 

  76. Singh V K, Kumar S, Pandey S K, et al. Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosensors & Bioelectronics, 2018, 105: 173–181

    CAS  Google Scholar 

  77. Miao L, Jiao L, Zhang J, et al. Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Microchimica Acta, 2017, 184(1): 169–175

    CAS  Google Scholar 

  78. Barman S C, Hossain M F, Yoon H, et al. Trimetallic Pd@Au@Pt nanocomposites platform on -COOH terminated reduced graphene oxide for highly sensitive CEA and PSA biomarkers detection. Biosensors & Bioelectronics, 2018, 100: 16–22

    CAS  Google Scholar 

  79. Shahrokhian S, Salimian R. Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing. Sensors and Actuators B: Chemical, 2018, 266: 160–169

    CAS  Google Scholar 

  80. Yang M, Javadi A, Gong S. Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical, 2011, 155(1): 357–360

    CAS  Google Scholar 

  81. Freitas M, Nouws H P A, Delerue-Matos C. Electrochemical sensing platforms for HER2-ECD breast cancer biomarker detection. Electroanalysis, 2019, 31(1): 121–128

    CAS  Google Scholar 

  82. Bai R G, Muthoosamy K, Shipton F N, et al. The biogenic synthesis of a reduced graphene oxide-silver (RGO-Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor. RSC Advances, 2016, 6(43): 36576–36587

    Google Scholar 

  83. Assari P, Rafati A A, Feizollahi A, et al. An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles. Microchimica Acta, 2019, 186(7): 484

    Google Scholar 

  84. Shoja Y, Kermanpur A, Karimzadeh F. Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosensors & Bioelectronics, 2018, 113: 108–115

    CAS  Google Scholar 

  85. Ma H, Zhang X, Li X, et al. Electrochemical immunosensor for detecting typical bladder cancer biomarker based on reduced graphene oxide-tetraethylene pentamine and trimetallic AuPdPt nanoparticles. Talanta, 2015, 143: 77–82

    CAS  Google Scholar 

  86. Rauf S, Mishra G K, Azhar J, et al. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Analytical Biochemistry, 2018, 545: 13–19

    CAS  Google Scholar 

  87. Shahzad F, Zaidi S A, Koo C M. Highly sensitive electrochemical sensor based on environmentally friendly biomassderived sulfur-doped graphene for cancer biomarker detection. Sensors and Actuators B: Chemical, 2017, 241: 716–724

    CAS  Google Scholar 

  88. Feng L, Wu L, Wang J, et al. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Advanced Materials, 2012, 24(1): 125–131

    CAS  Google Scholar 

  89. Kumar S, Sharma J G, Maji S, et al. Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosensors & Bioelectronics, 2016, 78: 497–504

    CAS  Google Scholar 

  90. Wang X, Wang C, Qu K, et al. Ultrasensitive and selective detection of a prognostic indicator in early-stage cancer using graphene oxide and carbon nanotubes. Advanced Functional Materials, 2010, 20(22): 3967–3971

    CAS  Google Scholar 

  91. Zhang F R, Lu J Y, Yao Q F, et al. Matter, energy and information network of a graphene-peptide-based fluorescent sensing system for molecular logic computing, detection and imaging of cancer stem cell marker CD133 in cells and tumor tissues. The Analyst, 2019, 144(6): 1881–1891

    CAS  Google Scholar 

  92. Cui F, Ji J, Sun J, et al. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Analytical and Bioanalytical Chemistry, 2019, 411(5): 985–995

    CAS  Google Scholar 

  93. Cao Y, Dong H, Yang Z, et al. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Applied Materials & Interfaces, 2017, 9(1): 159–166

    CAS  Google Scholar 

  94. Song J, Wu S, Yang X, et al. A carboxylated graphene nanodisks/ glucose oxidase nanotags and Mn:CdS/TiO2 matrix based dual signal amplification strategy for ultrasensitive photoelectrochemical detection of tumor markers. The Analyst, 2017, 142(24): 4647–4654

    CAS  Google Scholar 

  95. Hossain M B, Islam M M, Abdulrazak L F, et al. Graphenecoated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: a numerical design-based analysis. Photonic Sensors, 2020, 10(1): 67–79

    CAS  Google Scholar 

  96. Chiu N F, Lin T L, Kuo C T. Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma. Sensors and Actuators B: Chemical, 2018, 265: 264–272

    CAS  Google Scholar 

  97. Al-Ogaidi I, Gou H, Aguilar Z P, et al. Detection of the ovarian cancer biomarker CA-125 using chemiluminescence resonance energy transfer to graphene quantum dots. Chemical Communications, 2014, 50(11): 1344–1346

    CAS  Google Scholar 

  98. Pal M, Khan R. Graphene oxide layer decorated gold nanoparticles based immunosensor for the detection of prostate cancer risk factor. Analytical Biochemistry, 2017, 536: 51–58

    CAS  Google Scholar 

  99. Wang H, Chen H, Huang Z, et al. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta, 2018, 184: 219–226

    CAS  Google Scholar 

  100. Kim T H, Yoon H J, Fouladdel S, et al. Characterizing circulating tumor cells isolated from metastatic breast cancer patients using graphene oxide based microfluidic assay. Advanced Biosystems, 2019, 3(2): 1800278

    Google Scholar 

  101. Yang Z, Qin L, Yang D, et al. A graphene oxide fluorescent sensing platform for sensitive and specific detecting biomarker of radiation-resistant nasopharyngeal carcinoma. Bioorganic & Medicinal Chemistry Letters, 2019, 29(16): 2383–2386

    CAS  Google Scholar 

  102. Vilela P, El-Sagheer A, Millar T M, et al. Graphene oxideupconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’s disease and prostate cancer. ACS Sensors, 2017, 2(1): 52–56

    CAS  Google Scholar 

  103. Viraka Nellore B P, Kanchanapally R, Pramanik A, et al. Aptamer-conjugated graphene oxide membranes for highly efficient capture and accurate identification of multiple types of circulating tumor cells. Bioconjugate Chemistry, 2015, 26(2): 235–242

    CAS  Google Scholar 

  104. He L, Pagneux Q, Larroulet I, et al. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosensors & Bioelectronics, 2017, 89(Pt 1): 606–611

    CAS  Google Scholar 

  105. Tehrani Z, Burwell G, Azmi M A M, et al. Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Materials, 2014, 1(2): 025004

    Google Scholar 

  106. Wang X, Wang C, Qu K, et al. Ultrasensitive and selective detection of a prognostic indicator in early stage cancer using graphene oxide and carbon nanotubes. Advanced Functional Materials, 2010, 20(22): 3967–3971

    CAS  Google Scholar 

  107. Sharker S M, Kang E B, Shin C I, et al. Near-infrared-active and pH-responsive fluorescent polymer-integrated hybrid graphene oxide nanoparticles for the detection and treatment of cancer. Journal of Applied Polymer Science, 2016, 133(32): 43791

    Google Scholar 

  108. Wang B, Song Y, Ge L, et al. Antibody-modified reduced graphene oxide film for circulating tumor cell detection in early-stage prostate cancer patients. RSC Advances, 2019, 9(17): 9379–9385

    CAS  Google Scholar 

  109. Cheng Y, Yuan R, Chai Y, et al. Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Analytica Chimica Acta, 2012, 745: 137–142

    CAS  Google Scholar 

  110. Xu S, Liu Y, Wang T, et al. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Analytical Chemistry, 2011, 83(10): 3817–3823

    CAS  Google Scholar 

  111. Heidari R, Rashidiani J, Abkar M, et al. CdS nanocrystals/ graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: p53. Biosensors & Bioelectronics, 2019, 126: 7–14

    CAS  Google Scholar 

  112. Liu F, Zhang Y, Ge S, et al. Magnetic graphene nanosheets based electrochemiluminescence immunoassay of cancer biomarker using CdTe quantum dots coated silica nanospheres as labels. Talanta, 2012, 99: 512–519

    CAS  Google Scholar 

  113. Rashidiani J, Kamali M, Sedighian H, et al. Ultrahigh sensitive enhanced-electrochemiluminescence detection of cancer biomarkers using silica NPs/graphene oxide: A comparative study. Biosensors & Bioelectronics, 2018, 102: 226–233

    Google Scholar 

  114. Cui M, Yu R, Wang X, et al. Novel graphene/Au-CdS:Eu composite-based electrochemiluminescence immunosensor for cancer biomarker detection by coupling resonance energy transfer and enzyme catalytic reaction. Journal of Electroanalytical Chemistry, 2016, 781: 410–417

    CAS  Google Scholar 

  115. He Q, Wu S, Yin Z, et al. Graphene-based electronic sensors. Chemical Science, 2012, 3(6): 1764–1772

    CAS  Google Scholar 

  116. Hao Z, Pan Y, Shao W, et al. Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva. Biosensors & Bioelectronics, 2019, 134: 16–23

    CAS  Google Scholar 

  117. Myung S, Solanki A, Kim C, et al. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Advanced Materials, 2011, 23(19): 2221–2225

    CAS  Google Scholar 

  118. Rajesh, Gao Z, Vishnubhotla R, et al. Genetically engineered antibody functionalized platinum nanoparticles modified CVD-graphene nanohybrid transistor for the detection of breast cancer biomarker, HER3. Advanced Materials Interfaces, 2016, 3(17): 1600124

    Google Scholar 

  119. Zhou L, Wang K, Sun H, et al. Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Letters, 2019, 11(1): 20

    CAS  Google Scholar 

  120. Hao Z, Pan Y, Huang C, et al. Sensitive detection of lung cancer biomarkers using an aptameric graphene-based nanosensor with enhanced stability. Biomedical Microdevices, 2019, 21(3): 65

    Google Scholar 

  121. Mansouri Majd S, Salimi A. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Analytica Chimica Acta, 2018, 1000: 273–282

    CAS  Google Scholar 

  122. Nag S, Duarte L, Bertrand E, et al. Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(38): 6571–6579

    CAS  Google Scholar 

  123. Koncki R. Recent developments in potentiometric biosensors for biomedical analysis. Analytica Chimica Acta, 2007, 599(1): 7–15

    CAS  Google Scholar 

  124. Hong Z, Chen G, Yu S, et al. A potentiometric aptasensor for carcinoembryonic antigen (CEA) on graphene oxide nanosheets using catalytic recycling of DNase I with signal amplification. Analytical Methods, 2018, 10(45): 5364–5371

    CAS  Google Scholar 

  125. Li F, Hu S, Zhang R, et al. Porous graphene oxide enhanced aptamer specific circulating-tumor-cell sensing interface on light addressable potentiometric sensor: clinical application and simulation. ACS Applied Materials & Interfaces, 2019, 11(9): 8704–8709

    CAS  Google Scholar 

  126. Truta L A, Ferreira N S, Sales M G F. Graphene-based biomimetic materials targeting urine metabolite as potential cancer biomarker: application over different conductive materials for potentiometric transduction. Electrochimica Acta, 2014, 150: 99–107

    CAS  Google Scholar 

  127. Sur U K. Surface-enhanced Raman spectroscopy. Resonance, 2010, 15(2): 154–164

    CAS  Google Scholar 

  128. Kumar S, Kumar S, Srivastava S, et al. Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosensors & Bioelectronics, 2015, 73: 114–122

    CAS  Google Scholar 

  129. Papi M, Palmieri V, Digiacomo L, et al. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale, 2019, 11(32): 15339–15346

    CAS  Google Scholar 

  130. Zhang X F, Zhang Z W, He Y L, et al. Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor. Frontiers of Physics, 2016, 11(2): 116801

    Google Scholar 

Download references

Acknowledgement

We express sincere thanks to UGC-DAE-CSR/KC/CRS/19/RC07/0982/1017 for necessary funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalika Sen.

Additional information

Disclosure of potential conflicts of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Sen, K. A review on graphene-based materials as versatile cancer biomarker sensors. Front. Mater. Sci. 14, 353–372 (2020). https://doi.org/10.1007/s11706-020-0530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0530-8

Keywords

Navigation