Skip to main content
Log in

A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Graphene oxide (GO), which consists of two-dimensional (2D) sp2 carbon hexagonal networks and oxygen-contained functional groups, has laid the foundation of mass production and applications of graphene materials. Made by chemical oxidation of graphite, GO is highly dispersible or even solubilized in water and polar organic solvents, which resolves the hard problem of graphene processing and opens a door to wet-processing of graphene. Despite its defects, GO is easy to functionalize, dope, punch holes, cut into pieces, conduct chemical reduction, form lyotropic liquid crystal, and assemble into macroscopic materials with tunable structures and properties as a living building block. GO sheet has been viewed as a single molecule, a particle, as well as a soft polymer material. An overview on GO as a 2D macromolecule is essential for studying its intrinsic properties and guiding the development of relevant subjects. This review mainly focuses on recent advances of GO sheets, from single macromolecular behavior to macro-assembled graphene material properties. The first part of this review offers a brief introduction to the synthesis of GO molecules. Then the chemical structure and physical properties of GO are presented, as well as its polarity in solvent and rheology behavior. Several key parameters governing the ultimate stability of GO colloidal behavior, including size, pH and the presence of cation in aqueous dispersions, are highlighted. Furthermore, the discovery of GO liquid crystal and functionalization of GO molecules have built solid new foundations of preparing highly ordered, architecture-tunable, macro-assembled graphene materials, including 1D graphene fibers, 2D graphene films, and 3D graphene architectures. The GO-based composites are also viewed and the interactions between these target materials and GO are carefully discussed. Finally, an outlook is provided in this field, where GO is regarded as macromolecules, pointing out the challenges and opportunities that exist in the field. We hope that this review will be beneficial to the understanding of GO in terms of chemical structure, molecular properties, macro-assembly and potential applications, and encourage further development to extend its investigations from basic research to practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, Z.; Gao, C. Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267–1276.

    CAS  PubMed  Google Scholar 

  2. Dai, L. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46, 31–42.

    CAS  PubMed  Google Scholar 

  3. Radha, B.; Esfandiar, A.; Wang, F. C.; Rooney, A. P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L.; Lozada-Hidalgo, M.; Garaj, S.; Haigh, S. J.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K. Molecular transport through capillaries made with atomic-scale precision. Nature 2016, 538, 222–225.

    CAS  PubMed  Google Scholar 

  4. Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Kravets, V. G.; Rodriguez, F. J.; Berdyugin, A.; Grigorenko, A.; Geim, A. K. Giant photoeffect in proton transport through graphene membranes. Nat. Nanotechnol. 2018, 13, 300–303.

    CAS  PubMed  Google Scholar 

  5. Nedoliuk, I. O.; Hu, S.; Geim, A. K.; Kuzmenko, A. B. Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material. Nat. Nanotechnol. 2019, 14, 756–761.

    CAS  PubMed  Google Scholar 

  6. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    CAS  PubMed  Google Scholar 

  7. Khan, M. B.; Parvaz, M.; Khan, Z. H., Graphene oxide: synthesis and characterization. In Recent trends in nanomaterials: synthesis and properties. Khan, Z. H. Ed., Springer Singapore, Singapore, 2017, pp. 1–28.

    Google Scholar 

  8. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    CAS  Google Scholar 

  9. Xu, Z.; Gao, C. Aqueous liquid crystals of graphene oxide. ACS Nano 2011, 5, 2908–2915.

    CAS  PubMed  Google Scholar 

  10. Kim, J. E.; Han, T. H.; Lee, S. H.; Kim, J. Y.; Ahn, C. W.; Yun, J. M.; Kim, S. O. Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 2011, 50, 3043–3047.

    CAS  Google Scholar 

  11. McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    CAS  Google Scholar 

  12. Brodie, B. C. XXIII. Researches on the atomic weight of graphite. Q. J. Chem. Soc. 1860, 12, 261–268.

    Google Scholar 

  13. Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

    CAS  Google Scholar 

  14. Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229.

    CAS  Google Scholar 

  15. Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 2009, 21, 3514–3520.

    CAS  Google Scholar 

  16. Chen, J.; Li, Y.; Huang, L.; Li, C.; Shi, G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 2015, 81, 826–834.

    CAS  Google Scholar 

  17. Abdelkader, A. M.; Kinloch, I. A.; Dryfe, R. A. W. High-yield electro-oxidative preparation of graphene oxide. Chem. Commun. 2014, 50, 8402–8404.

    CAS  Google Scholar 

  18. Huang, H.; Peng, L.; Fang, W.; Cai, S.; Chu, X.; Liu, Y.; Gao, W.; Xu, Z.; Gao, C. A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene. Nanoscale 2020, 12, 11971–11978.

    CAS  PubMed  Google Scholar 

  19. Posudievsky, O. Y.; Khazieieva, O. A.; Koshechko, V. G.; Pokhodenko, V. D. Preparation of graphene oxide by solventfree mechanochemical oxidation of graphite. J. Mater. Chem. 2012, 22, 12465–12467.

    CAS  Google Scholar 

  20. Dash, P.; Dash, T.; Rout, T. K.; Sahu, A. K.; Biswal, S. K.; Mishra, B. K. Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv. 2016, 6, 12657–12668.

    CAS  Google Scholar 

  21. Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 2013, 25, 188–193.

    CAS  PubMed  Google Scholar 

  22. Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, X.; Bai, H.; Shi, G. Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J. Am. Chem. Soc. 2011, 133, 6338–6342.

    CAS  PubMed  Google Scholar 

  24. Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H. M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245–5252.

    CAS  PubMed  Google Scholar 

  25. Pan, S.; Aksay, I. A. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 2011, 5, 4073–4083.

    CAS  PubMed  Google Scholar 

  26. Li, J. L.; Kudin, K. N.; McAllister, M. J.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Oxygen-driven unzipping of graphitic materials. Phys. Rev. Lett. 2006, 96, 176101.

    PubMed  Google Scholar 

  27. Dong, L.; Chen, Z.; Lin, S.; Wang, K.; Ma, C.; Lu, H. Reactivity-controlled preparation of ultralarge graphene oxide by chemical expansion of graphite. Chem. Mater. 2017, 29, 564–572.

    CAS  Google Scholar 

  28. Su, C. Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C. H.; Li, L. J. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 2009, 21, 5674–5680.

    CAS  Google Scholar 

  29. Qi, X.; Zhou, T.; Deng, S.; Zong, G.; Yao, X.; Fu, Q. Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization. J. Mater. Sci. 2014, 49, 1785–1793.

    CAS  Google Scholar 

  30. Chen, J.; Zhang, X.; Zheng, X.; Liu, C.; Cui, X.; Zheng, W. Size distribution-controlled preparation of graphene oxide nanosheets with different C/O ratios. Mater. Chem. Phys. 2013, 139, 8–11.

    CAS  Google Scholar 

  31. Khan, U.; O’Neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J. N. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 2012, 50, 470–475.

    CAS  Google Scholar 

  32. Xu, X.; Liu, L.; Geng, H.; Wang, J.; Zhou, J.; Jiang, Y.; Doi, M. Directional freezing of binary colloidal suspensions: a model for size fractionation of graphene oxide. Soft Matter 2019, 15, 243–251.

    CAS  PubMed  Google Scholar 

  33. Geng, H.; Yao, B.; Zhou, J.; Liu, K.; Bai, G.; Li, W.; Song, Y.; Shi, G.; Doi, M.; Wang, J. Size fractionation of graphene oxide nanosheets via controlled directional freezing. J. Am. Chem. Soc. 2017, 139, 12517–12523.

    CAS  PubMed  Google Scholar 

  34. Chen, J.; Li, Y.; Huang, L.; Jia, N.; Li, C.; Shi, G. Size fractionation of graphene oxide sheets via filtration through track-etched membranes. Adv. Mater. 2015, 27, 3654–3660.

    CAS  PubMed  Google Scholar 

  35. Zhang, W.; Zou, X.; Li, H.; Hou, J.; Zhao, J.; Lan, J.; Feng, B.; Liu, S. Size fractionation of graphene oxide sheets by the polar solvent-selective natural deposition method. RSC Adv. 2015, 5, 146–152.

    CAS  Google Scholar 

  36. Davardoostmanesh, M.; Goharshadi, E. K.; Ahmadzadeh, H. Electrophoretic size fractionation of graphene oxide nanosheets. New J. Chem. 2019, 43, 5047–5054.

    CAS  Google Scholar 

  37. Zhang, S.; Li, Y.; Sun, J.; Wang, J.; Qin, C.; Dai, L. Size fractionation of graphene oxide sheets assisted by circular flow and their graphene aerogels with size-dependent adsorption. RSC Adv. 2016, 6, 74053–74060.

    CAS  Google Scholar 

  38. Liu, F.; Jang, M. H.; Ha, H. D.; Kim, J. H.; Cho, Y. H.; Seo, T. S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv. Mater. 2013, 25, 3657–3662.

    CAS  PubMed  Google Scholar 

  39. Park, M.; Ha, H. D.; Kim, Y. T.; Jung, J. H.; Kim, S. H.; Kim, D. H.; Seo, T. S. Combination of a sample pretreatment microfluidic device with a photoluminescent graphene oxide quantum dot sensor for trace lead detection. Anal. Chem. 2015, 87, 10969–10975.

    CAS  PubMed  Google Scholar 

  40. Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297–3303.

    CAS  PubMed  Google Scholar 

  41. Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472.

    CAS  PubMed  Google Scholar 

  42. Chen, H.; Du, W.; Liu, J.; Qu, L.; Li, C. Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chem. Sci. 2019, 10, 1244–1253.

    CAS  PubMed  Google Scholar 

  43. Wang, X.; Jiao, L.; Sheng, K.; Li, C.; Dai, L.; Shi, G. Solution-processable graphene nanomeshes with controlled pore structures. Sci. Rep. 2013, 3, 1996.

    PubMed  PubMed Central  Google Scholar 

  44. Zhou, S.; Kim, S.; Bongiorno, A. Chemical structure of oxidized multilayer epitaxial graphene: a density functional theory study. J. Phys. Chem. C 2013, 117, 6267–6274.

    CAS  Google Scholar 

  45. Lee, V.; Dennis, R. V.; Schultz, B. J.; Jaye, C.; Fischer, D. A.; Banerjee, S. Soft X-ray absorption spectroscopy studies of the electronic structure recovery of graphene oxide upon chemical defunctionalization. J. Phys. Chem. C 2012, 116, 20591–20599.

    CAS  Google Scholar 

  46. Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.

    CAS  PubMed  Google Scholar 

  47. Neklyudov, V. V.; Agieienko, V. N.; Ziganshin, M. A.; Dimiev, A. M. On the solvation behavior of graphene oxide in ethylene glycol/water mixtures. ChemPhysChem 2018, 19, 1344–1348.

    CAS  PubMed  Google Scholar 

  48. Kim, D. H.; Yun, Y. S.; Jin, H. J. Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents. Curr. Appl. Phys. 2012, 12, 637–642.

    Google Scholar 

  49. Konios, D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interf. Sci. 2014, 430, 108–112.

    CAS  Google Scholar 

  50. Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

    CAS  PubMed  Google Scholar 

  51. Neklyudov, V. V.; Khafizov, N. R.; Sedov, I. A.; Dimiev, A. M. New insights into the solubility of graphene oxide in water and alcohols. Phys. Chem. Chem. Phys. 2017, 19, 17000–17008.

    CAS  PubMed  Google Scholar 

  52. Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186.

    CAS  PubMed  Google Scholar 

  53. Luo, J.; Cote, L. J.; Tung, V. C.; Tan, A. T. L.; Goins, P. E.; Wu, J.; Huang, J. Graphene oxide nanocolloids. J. Am. Chem. Soc. 2010, 132, 17667–17669.

    CAS  PubMed  Google Scholar 

  54. Kim, F.; Cote, L. J.; Huang, J. Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. 2010, 22, 1954–1958.

    CAS  PubMed  Google Scholar 

  55. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    CAS  PubMed  Google Scholar 

  56. Bepete, G.; Anglaret, E.; Ortolani, L.; Morandi, V.; Huang, K.; Pénicaud, A.; Drummond, C. Surfactant-free single-layer graphene in water. Nat. Chem. 2017, 9, 347–352.

    CAS  PubMed  Google Scholar 

  57. Bai, G.; Gao, D.; Liu, Z.; Zhou, X.; Wang, J. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 2019, 576, 437–441.

    CAS  PubMed  Google Scholar 

  58. Koltonow, A. R.; Luo, C.; Luo, J.; Huang, J. Graphene oxide sheets in solvents: to crumple or not to crumple? ACS Omega 2017, 2, 8005–8009.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang, B.; Yun, X.; Xiong, Z.; Wang, X. Formation of graphene oxide nanoscrolls in organic solvents: toward scalable device fabrication. ACS Appl. Nano Mater. 2018, 1, 686–697.

    CAS  Google Scholar 

  60. Tang, B.; Xiong, Z.; Yun, X.; Wang, X. Rolling up graphene oxide sheets through solvent-induced self-assembly in dispersions. Nanoscale 2018, 10, 4113–4122.

    CAS  PubMed  Google Scholar 

  61. Tang, B.; Gao, E.; Xiong, Z.; Dang, B.; Xu, Z.; Wang, X. Transition of graphene oxide from nanomembrane to nanoscroll mediated by organic solvent in dispersion. Chem. Mater. 2018, 30, 5951–5960.

    CAS  Google Scholar 

  62. Chen, C.; Xu, Z.; Han, Y.; Sun, H.; Gao, C. Redissolution of flower-shaped graphene oxide powder with high density. ACS Appl. Mater. Interfaces 2016, 8, 8000–8007.

    CAS  PubMed  Google Scholar 

  63. Zhang, M.; Wang, Y.; Huang, L.; Xu, Z.; Li, C.; Shi, G. Multifunctional pristine chemically modified graphene films as strong as stainless steel. Adv. Mater. 2015, 27, 6708–6713.

    CAS  PubMed  Google Scholar 

  64. Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

    CAS  Google Scholar 

  65. Ma, X.; Zachariah, M. R.; Zangmeister, C. D. Crumpled nanopaper from graphene oxide. Nano Lett. 2012, 12, 486–489.

    CAS  PubMed  Google Scholar 

  66. Lee, W. K.; Kang, J.; Chen, K. S.; Engel, C. J.; Jung, W. B.; Rhee, D.; Hersam, M. C.; Odom, T. W. Multiscale, hierarchical patterning of graphene by conformal wrinkling. Nano Lett. 2016, 16, 7121–7127.

    CAS  PubMed  Google Scholar 

  67. Xiao, Y.; Xu, Z.; Liu, Y.; Peng, L.; Xi, J.; Fang, B.; Guo, F.; Li, P.; Gao, C. Sheet collapsing approach for rubber-like graphene papers. ACS Nano 2017, 11, 8092–8102.

    CAS  PubMed  Google Scholar 

  68. Abraham, F. F.; Kardar, M. Folding and unbinding transitions in tethered membranes. Science 1991, 252, 419.

    CAS  PubMed  Google Scholar 

  69. Wen, X.; Garland, C. W.; Hwa, T.; Kardar, M.; Kokufuta, E.; Li, Y.; Orkisz, M.; Tanaka, T. Crumpled and collapsed conformation in graphite oxide membranes. Nature 1992, 355, 426–428.

    CAS  Google Scholar 

  70. Bowick, M.; Falcioni, M.; Thorleifsson, G. Numerical observation of a tubular phase in anisotropic membranes. Phys. Rev. Lett. 1997, 79, 885–888.

    CAS  Google Scholar 

  71. Wang, Y.; Wang, S. J.; Li, P.; Rajendran, S.; Xu, Z.; Liu, S. P.; Guo, F.; He, Y. H.; Li, Z. S.; Xu, Z. P.; Gao, C. Conformational phase map of two-dimensional macromolecular graphene oxide in solution. Matter 2020, 3, 230–245.

    Google Scholar 

  72. Shih, C. J.; Lin, S.; Sharma, R.; Strano, M. S.; Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 2012, 28, 235–241.

    CAS  PubMed  Google Scholar 

  73. Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z.; Wang, H. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir 2013, 29, 15174–15181.

    CAS  PubMed  Google Scholar 

  74. Chowdhury, I.; Duch, M. C.; Mansukhani, N. D.; Hersam, M. C.; Bouchard, D. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ. Sci. Technol. 2013, 47, 6288–6296.

    CAS  PubMed  Google Scholar 

  75. Yang, K.; Chen, B.; Zhu, X.; Xing, B. Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations. Environ. Sci. Technol. 2016, 50, 11066–11075.

    CAS  PubMed  Google Scholar 

  76. Gudarzi, M. M. Colloidal stability of graphene oxide: aggregation in two dimensions. Langmuir 2016, 32, 5058–5068.

    CAS  PubMed  Google Scholar 

  77. Yeh, C. N.; Raidongia, K.; Shao, J.; Yang, Q. H.; Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7, 166–170.

    CAS  Google Scholar 

  78. Guo, F.; Jiang, Y.; Xu, Z.; Xiao, Y.; Fang, B.; Liu, Y.; Gao, W.; Zhao, P.; Wang, H.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881.

    PubMed  PubMed Central  Google Scholar 

  79. He, Y.; Liu, Y.; Guo, F.; Pang, K.; Fang, B.; Wang, Y.; Chang, D.; Xu, Z.; Gao, C. Dynamic dispersion stability of graphene oxide with metal ions. Chin. Chem. Lett. 2020, 31, 1625–1629.

    CAS  Google Scholar 

  80. Del, Giudice F.; Shen, A. Q. Shear rheology of graphene oxide dispersions. Curr. Opin. Chem. Eng. 2017, 11, 23–30.

    Google Scholar 

  81. Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin Iii, R. A.; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. Graphene oxide dispersions: tuning rheology to enable fabrication. Mater. Horiz. 2014, 1, 326–331.

    CAS  Google Scholar 

  82. Tesfai, W.; Singh, P.; Shatilla, Y.; Iqbal, M. Z.; Abdala, A. A. Rheology and microstructure of dilute graphene oxide suspension. J. Nanopart. Res. 2013, 15, 1989.

    Google Scholar 

  83. Vallés, C.; Young, R. J.; Lomax, D. J.; Kinloch, I. A. The rheological behaviour of concentrated dispersions of graphene oxide. J. Mater. Sci. 2014, 49, 6311–6320.

    Google Scholar 

  84. Jiang, Y.; Xu, Z.; Huang, T.; Liu, Y.; Guo, F.; Xi, J.; Gao, W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024.

    Google Scholar 

  85. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    CAS  Google Scholar 

  86. Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.

    CAS  Google Scholar 

  87. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

    CAS  PubMed  Google Scholar 

  88. Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474.

    CAS  Google Scholar 

  89. Haubner, K.; Murawski, J.; Olk, P.; Eng, L. M.; Ziegler, C.; Adolphi, B.; Jaehne, E. The route to functional graphene oxide. ChemPhysChem 2010, 11, 2131–2139.

    CAS  PubMed  Google Scholar 

  90. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

    CAS  Google Scholar 

  91. Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

    CAS  PubMed  Google Scholar 

  92. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    CAS  PubMed  Google Scholar 

  93. Song, N. J.; Chen, C. M.; Lu, C.; Liu, Z.; Kong, Q. Q.; Cai, R. Thermally reduced graphene oxide films as flexible lateral heat spreaders. J. Mater. Chem. A 2014, 2, 16563–16568.

    CAS  Google Scholar 

  94. Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Highly thermally conductive and mechanically strong graphene fibers. Science 2015, 349, 1083–1087.

    CAS  PubMed  Google Scholar 

  95. Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.

    Google Scholar 

  96. Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

    CAS  PubMed  Google Scholar 

  97. Williams, G.; Kamat, P. V. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009, 25, 13869–13873.

    CAS  PubMed  Google Scholar 

  98. Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 2010, 1, 2607–2612.

    CAS  Google Scholar 

  99. Liu, Y.; Li, P.; Wang, F.; Fang, W.; Xu, Z.; Gao, W.; Gao, C. Rapid roll-to-roll production of graphene films using intensive Joule heating. Carbon 2019, 155, 462–468.

    CAS  Google Scholar 

  100. Zhang, Y.; Guo, L.; Wei, S.; He, Y.; Xia, H.; Chen, Q.; Sun, H. B.; Xiao, F. S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15–20.

    CAS  Google Scholar 

  101. Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 2016, 353, 1413.

    CAS  PubMed  Google Scholar 

  102. Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V. A.; Li, T.; Hu, L. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 2016, 16, 3616–3623.

    CAS  PubMed  Google Scholar 

  103. Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 2009, 113, 14071–14075.

    CAS  Google Scholar 

  104. An, S. J.; Zhu, Y.; Lee, S. H.; Stoller, M. D.; Emilsson, T.; Park, S.; Velamakanni, A.; An, J.; Ruoff, R. S. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J. Phys. Chem. Lett. 2010, 1, 1259–1263.

    CAS  Google Scholar 

  105. Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 2009, 15, 6116–6120.

    CAS  PubMed  Google Scholar 

  106. Johns, J. E.; Hersam, M. C. Atomic covalent functionalization of graphene. Acc. Chem. Res. 2013, 46, 77–86.

    CAS  PubMed  Google Scholar 

  107. Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944.

    CAS  PubMed  Google Scholar 

  108. Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

    CAS  PubMed  Google Scholar 

  109. Kumar, N. A.; Nolan, H.; McEvoy, N.; Rezvani, E.; Doyle, R. L.; Lyons, M. E. G.; Duesberg, G. S. Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J. Mater. Chem. A 2013, 1, 4431–4435.

    CAS  Google Scholar 

  110. Zhang, H.; Kuila, T.; Kim, N. H.; Yu, D. S.; Lee, J. H. Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 2014, 69, 66–78.

    Google Scholar 

  111. Wang, X.; Wang, J.; Wang, D.; Dou, S.; Ma, Z.; Wu, J.; Tao, L.; Shen, A.; Ouyang, C.; Liu, Q.; Wang, S. One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem. Commun. 2014, 50, 4839–4842.

    CAS  Google Scholar 

  112. Yu, Q.; Xu, J.; Wan, C.; Wu, C.; Guan, L. Porous cobalt-nitrogen-doped hollow graphene spheres as a superior electrocatalyst for enhanced oxygen reduction in both alkaline and acidic solutions. J. Mater. Chem. A 2015, 3, 16419–16423.

    CAS  Google Scholar 

  113. Xu, K.; Fu, Y.; Zhou, Y.; Hennersdorf, F.; Machata, P.; Vincon, I.; Weigand, J. J.; Popov, A. A.; Berger, R.; Feng, X. Cationic nitrogen-doped helical nanographenes. Angew. Chem. Int. Ed. 2017, 56, 15876–15881.

    CAS  Google Scholar 

  114. Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew. Chem. Int. Ed. 2010, 122, 10282–10286.

    Google Scholar 

  115. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    CAS  PubMed  Google Scholar 

  116. Melucci, M.; Treossi, E.; Ortolani, L.; Giambastiani, G.; Morandi, V.; Klar, P.; Casiraghi, C.; Samorì, P.; Palermo, V. Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. J. Mater. Chem. 2010, 20, 9052–9060.

    CAS  Google Scholar 

  117. Liu, H.; Xi, P.; Xie, G.; Shi, Y.; Hou, F.; Huang, L.; Chen, F.; Zeng, Z.; Shao, C.; Wang, J. Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J. Phys. Chem. C 2012, 116, 3334–3341.

    CAS  Google Scholar 

  118. Xue, Y.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J. Phys. Chem. Lett. 2012, 3, 1607–1612.

    CAS  PubMed  Google Scholar 

  119. Kang, S. M.; Park, S.; Kim, D.; Park, S. Y.; Ruoff, R. S.; Lee, H. Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv. Funct. Mater. 2011, 21, 108–112.

    CAS  Google Scholar 

  120. Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 3455–3461.

    CAS  Google Scholar 

  121. Ou, J.; Wang, J.; Liu, S.; Mu, B.; Ren, J.; Wang, H.; Yang, S. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 2010, 26, 15830–15836.

    CAS  PubMed  Google Scholar 

  122. Sonin, A. S. Inorganic lyotropic liquid crystals. J. Mater. Chem. 1998, 8, 2557–2574.

    CAS  Google Scholar 

  123. Davidson, P.; Gabriel, J. C. P. Mineral liquid crystals. Curr. Opin. Colloid Interface Sci. 2005, 9, 377–383.

    CAS  Google Scholar 

  124. Emerson, W. W. Liquid crystals of montmorillonite. Nature 1956, 178, 1248–1249.

    CAS  Google Scholar 

  125. Thiele, H. Viskosität und gelbildung der graphitsäure. Kolloid-Z. 1948, 111, 15–19.

    CAS  Google Scholar 

  126. Dan, B.; Behabtu, N.; Martinez, A.; Evans, J. S.; Kosynkin, D. V.; Tour, J. M.; Pasquali, M.; Smalyukh, I. I. Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter 2011, 7, 11154–11159.

    CAS  Google Scholar 

  127. Zamora-Ledezma, C.; Puech, N.; Zakri, C.; Grelet, E.; Moulton, S. E.; Wallace, G. G.; Gambhir, S.; Blanc, C.; Anglaret, E.; Poulin, P. Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide. J. Phys. Chem. Lett. 2012, 3, 2425–2430.

    CAS  PubMed  Google Scholar 

  128. Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Konstantinov, K.; Moulton, S. E.; Razal, J. M.; Wallace, G. G. Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano 2013, 7, 3981–3990.

    CAS  PubMed  Google Scholar 

  129. Gudarzi, M. M.; Moghadam, M. H. M.; Sharif, F. Spontaneous exfoliation of graphite oxide in polar aprotic solvents as the route to produce graphene oxide-organic solvents liquid crystals. Carbon 2013, 64, 403–415.

    CAS  Google Scholar 

  130. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659.

    CAS  Google Scholar 

  131. Aboutalebi, S. H.; Gudarzi, M. M.; Zheng, Q. B.; Kim, J. K. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv. Funct. Mater. 2011, 21, 2978–2988.

    CAS  Google Scholar 

  132. Kumar, P.; Maiti, U. N.; Lee, K. E.; Kim, S. O. Rheological properties of graphene oxide liquid crystal. Carbon 2014, 80, 453–461.

    CAS  Google Scholar 

  133. Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

    PubMed  PubMed Central  Google Scholar 

  134. Jiang, Y.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. Artificial colloidal liquid metacrystals by shearing microlithography. Nat. Commun. 2019, 10, 4111.

    PubMed  PubMed Central  Google Scholar 

  135. Liu, Z.; Xu, Z.; Hu, X.; Gao, C. Lyotropic liquid crystal of polyacrylonitrile-grafted graphene oxide and its assembled continuous strong nacre-mimetic fibers. Macromolecules 2013, 46, 6931–6941.

    CAS  Google Scholar 

  136. Yao, B.; Chen, J.; Huang, L.; Zhou, Q.; Shi, G. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 2016, 28, 1623–1629.

    CAS  PubMed  Google Scholar 

  137. Shen, T. Z.; Hong, S. H.; Song, J. K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 2014, 13, 394–399.

    CAS  PubMed  Google Scholar 

  138. Wang, B.; Liu, J.; Zhao, Y.; Li, Y.; Xian, W.; Amjadipour, M.; MacLeod, J.; Motta, N. Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance. ACS Appl. Mater. Interfaces 2016, 8, 22316–22323.

    CAS  PubMed  Google Scholar 

  139. Guo, F.; Kim, F.; Han, T. H.; Shenoy, V. B.; Huang, J.; Hurt, R. H. Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. ACS Nano 2011, 5, 8019–8025.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Park, H.; Lee, K. H.; Kim, Y. B.; Ambade, S. B.; Noh, S. H.; Eom, W.; Hwang, J. Y.; Lee, W. J.; Huang, J.; Han, T. H. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Sci. Adv. 2018, 4, eaau2104.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hu, X.; Xu, Z.; Liu, Z.; Gao, C. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 2013, 3, 2374.

    PubMed  PubMed Central  Google Scholar 

  142. Akbari, A.; Sheath, P.; Martin, S. T.; Shinde, D. B.; Shaibani, M.; Banerjee, P. C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 2016, 7, 10891.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zakri, C.; Blanc, C.; Grelet, E.; Zamora-Ledezma, C.; Puech, N.; Anglaret, E.; Poulin, P. Liquid crystals of carbon nanotubes and graphene. Philos. Trans. R. Soc. A 2013, 371, 20120499.

    Google Scholar 

  144. Yang, Q.; Xu, Z.; Gao, C. Graphene fiber based supercapacitors: strategies and perspective toward high performances. J. Energy Chem. 2018, 27, 6–11.

    Google Scholar 

  145. Fang, B.; Chang, D.; Xu, Z.; Gao, C. A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 2020, 32, 1902664.

    CAS  Google Scholar 

  146. Liu, Y.; Xu, Z.; Gao, W.; Cheng, Z.; Gao, C. Graphene and other 2D colloids: liquid crystals and macroscopic fibers. Adv. Mater. 2017, 29, 1606794.

    Google Scholar 

  147. Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856–1861.

    CAS  PubMed  Google Scholar 

  148. Xin, G.; Sun, H.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 2014, 26, 4521–4526.

    CAS  PubMed  Google Scholar 

  149. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457.

    CAS  PubMed  Google Scholar 

  150. Xu, Z.; Zhang, Y.; Li, P.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113.

    CAS  PubMed  Google Scholar 

  151. Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; Gao, C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449–6456.

    CAS  PubMed  Google Scholar 

  152. Li, P.; Liu, Y.; Shi, S.; Xu, Z.; Ma, W.; Wang, Z.; Liu, S.; Gao, C. Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv. Funct. Mater. 2020, n/a, 2006584.

  153. Park, S.; Lee, K. S.; Bozoklu, G.; Cai, W.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2008, 2, 572–578.

    CAS  PubMed  Google Scholar 

  154. Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv. Mater. 2018, 30, 1706435.

    Google Scholar 

  155. Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Koo, S. H.; Hwang, H.; Jung, H. J.; Park, J. Y.; Jeong, H. S.; Kim, S. O. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv. Mater. 2018, 30, 1803267.

    Google Scholar 

  156. Shin, M. K.; Lee, B.; Kim, S. H.; Lee, J. A.; Spinks, G. M.; Gambhir, S.; Wallace, G. G.; Kozlov, M. E.; Baughman, R. H.; Kim, S. J. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 2012, 3, 650.

    PubMed  PubMed Central  Google Scholar 

  157. Ni, H.; Xu, F.; Tomsia, A. P.; Saiz, E.; Jiang, L.; Cheng, Q. Robust bioinspired graphene film via π-π cross-linking. ACS Appl. Mater. Interfaces 2017, 9, 24987–24992.

    CAS  PubMed  Google Scholar 

  158. Zhang, X.; Guo, Y.; Liu, Y.; Li, Z.; Fang, W.; Peng, L.; Zhou, J.; Xu, Z.; Gao, C. Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon 2020, 167, 249–255.

    CAS  Google Scholar 

  159. Hicks, J.; Behnam, A.; Ural, A. A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites. Appl. Phys. Lett. 2009, 95, 213103.

    Google Scholar 

  160. Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Berr, M.; Jäckel, F.; Feldmann, J.; Rogach, A. L. Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: synthesis and function. Adv. Funct. Mater. 2011, 21, 1547–1556.

    CAS  Google Scholar 

  161. Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562.

    CAS  PubMed  Google Scholar 

  162. Wang, H.; Wang, C.; Jian, M.; Wang, Q.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 2018, 11, 2347–2356.

    CAS  Google Scholar 

  163. Cai, S.; Huang, T.; Chen, H.; Salman, M.; Gopalsamy, K.; Gao, C. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. J. Mater. Chem. A 2017, 5, 22489–22494.

    CAS  Google Scholar 

  164. Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 2018, 14, 1703934.

    Google Scholar 

  165. Li, G.; Hong, G.; Dong, D.; Song, W.; Zhang, X. Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv. Mater. 2018, 30, 1801754.

    Google Scholar 

  166. Zheng, X.; Zhang, K.; Yao, L.; Qiu, Y.; Wang, S. Hierarchically porous sheath-core graphene-based fiber-shaped supercapacitors with high energy density. J. Mater. Chem. A 2018, 6, 896–907.

    CAS  Google Scholar 

  167. Meng, J.; Nie, W.; Zhang, K.; Xu, F.; Ding, X.; Wang, S.; Qiu, Y. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl. Mater. Interfaces 2018, 10, 13652–13659.

    CAS  PubMed  Google Scholar 

  168. Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    CAS  PubMed  Google Scholar 

  169. Wu, G.; Tan, P.; Wu, X.; Peng, L.; Cheng, H.; Wang, C. F.; Chen, W.; Yu, Z.; Chen, S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv. Funct. Mater. 2017, 27, 1702493.

    Google Scholar 

  170. Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. Ultrastrong bioinspired graphene-based fibers via synergistic toughening. Adv. Mater. 2016, 28, 2834–2839.

    CAS  PubMed  Google Scholar 

  171. Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28, 3646–3652.

    CAS  PubMed  Google Scholar 

  172. Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G. G. Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv. Energy Mater. 2018, 8, 1702047.

    Google Scholar 

  173. Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331.

    CAS  PubMed  Google Scholar 

  175. Chen, G.; Chen, T.; Hou, K.; Ma, W.; Tebyetekerwa, M.; Cheng, Y.; Weng, W.; Zhu, M. Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 2018, 127, 218–227.

    CAS  Google Scholar 

  176. Wang, R.; Xu, Z.; Zhuang, J.; Liu, Z.; Peng, L.; Li, Z.; Liu, Y.; Gao, W.; Gao, C. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters. Adv. Electron. Mater. 2017, 3, 1600425.

    Google Scholar 

  177. Liu, Y.; Xu, Z.; Zhan, J.; Li, P.; Gao, C. Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 2016, 28, 7941–7947.

    CAS  PubMed  Google Scholar 

  178. Liu, Y.; Liang, H.; Xu, Z.; Xi, J.; Chen, G.; Gao, W.; Xue, M.; Gao, C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 2017, 11, 4301–4306.

    CAS  PubMed  Google Scholar 

  179. Zhou, Q.; Zhang, M.; Chen, J.; Hong, J. D.; Shi, G. Nitrogen-doped holey graphene film-based ultrafast electrochemical capacitors. ACS Appl. Mater. Interfaces 2016, 8, 20741–20747.

    CAS  PubMed  Google Scholar 

  180. Yin, S.; Zhang, Y.; Kong, J.; Zou, C.; Li, C. M.; Lu, X.; Ma, J.; Boey, F. Y. C.; Chen, X. Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 2011, 5, 3831–3838.

    CAS  PubMed  Google Scholar 

  181. Yang, X.; Cheng, C.; Wang, Y.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534.

    CAS  PubMed  Google Scholar 

  182. Cai, S.; Bai, T.; Chen, H.; Fang, W.; Xu, Z.; Lai, H.; Huang, T.; Xu, H.; Chu, X.; Ling, J.; Gao, C. Heavy water enables high-voltage aqueous electrochemistry via the deuterium isotope effect. J. Phys. Chem. Lett. 2020, 11, 303–310.

    CAS  PubMed  Google Scholar 

  183. Zhang, L.; Ding, Y.; Zhang, C.; Zhou, Y.; Zhou, X.; Liu, Z.; Yu, G. Enabling graphene-oxide-based membranes for large-scale energy storage by controlling hydrophilic microstructures. Chem 2018, 4, 1035–1046.

    CAS  Google Scholar 

  184. Dong, X.; Xu, H.; Chen, H.; Wang, L.; Wang, J.; Fang, W.; Chen, C.; Salman, M.; Xu, Z.; Gao, C. Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 2019, 148, 134–140.

    CAS  Google Scholar 

  185. Chen, H.; Xu, H.; Wang, S.; Huang, T.; Xi, J.; Cai, S.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv. 2017, 3, eaao7233.

    PubMed  PubMed Central  Google Scholar 

  186. Chen, H.; Guo, F.; Liu, Y.; Huang, T.; Zheng, B.; Ananth, N.; Xu, Z.; Gao, W.; Gao, C. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 2017, 29, 1605958.

    Google Scholar 

  187. Chen, L.; Shi, G.; Shen, J.; Peng, B.; Zhang, B.; Wang, Y.; Bian, F.; Wang, J.; Li, D.; Qian, Z.; Xu, G.; Liu, G.; Zeng, J.; Zhang, L.; Yang, Y.; Zhou, G.; Wu, M.; Jin, W.; Li, J.; Fang, H. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380–383.

    CAS  PubMed  Google Scholar 

  188. Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Nair, R. R. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 2017, 16, 1198–1202.

    CAS  PubMed  Google Scholar 

  189. Zhou, K. G.; Vasu, K. S.; Cherian, C. T.; Neek-Amal, M.; Zhang, J. C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O. P.; Kravets, V. G.; Abraham, J.; Su, Y.; Grigorenko, A. N.; Pratt, A.; Geim, A. K.; Peeters, F. M.; Novoselov, K. S.; Nair, R. R. Electrically controlled water permeation through graphene oxide membranes. Nature 2018, 559, 236–240.

    CAS  PubMed  Google Scholar 

  190. Wang, J.; Sun, L.; Zou, M.; Gao, W.; Liu, C.; Shang, L.; Gu, Z.; Zhao, Y. Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 2017, 3, e1700004.

    PubMed  PubMed Central  Google Scholar 

  191. Zhou, F.; Tien, H. N.; Xu, W. L.; Chen, J. T.; Liu, Q.; Hicks, E.; Fathizadeh, M.; Li, S.; Yu, M. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nat. Commun. 2017, 8, 2107.

    PubMed  PubMed Central  Google Scholar 

  192. Zhang, Y. F.; Han, D.; Zhao, Y. H.; Bai, S. L. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 2016, 109, 552–557.

    CAS  Google Scholar 

  193. Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093.

    CAS  PubMed  Google Scholar 

  194. Zhang, P.; Liu, F.; Liao, Q.; Yao, H.; Geng, H.; Cheng, H.; Li, C.; Qu, L. A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem. Int. Ed. 2018, 57, 16343–16347.

    CAS  Google Scholar 

  195. Xi, J.; Li, Y.; Zhou, E.; Liu, Y.; Gao, W.; Guo, Y.; Ying, J.; Chen, Z.; Chen, G.; Gao, C. Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 2018, 135, 44–51.

    CAS  Google Scholar 

  196. Zhou, E.; Xi, J.; Guo, Y.; Liu, Y.; Xu, Z.; Peng, L.; Gao, W.; Ying, J.; Chen, Z.; Gao, C. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 2018, 133, 316–322.

    CAS  Google Scholar 

  197. Xu, J.; Yuan, G.; Zhu, Q.; Wang, J.; Tang, S.; Gao, L. Enhancing the strength of graphene by a denser grain boundary. ACS Nano 2018, 12, 4529–4535.

    CAS  PubMed  Google Scholar 

  198. Liu, R. Y.; Xu, A. W. Byssal threads inspired ionic cross-linked narce-like graphene oxide paper with superior mechanical strength. RSC Adv. 2014, 4, 40390–40395.

    CAS  Google Scholar 

  199. Li, P.; Yang, M.; Liu, Y.; Qin, H.; Liu, J.; Xu, Z.; Liu, Y.; Meng, F.; Lin, J.; Wang, F.; Gao, C. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 2020, 11, 2645.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Ranjbartoreh, A. R.; Wang, B.; Shen, X.; Wang, G. Advanced mechanical properties of graphene paper. J. Appl. Phys. 2011, 109, 014306.

    Google Scholar 

  201. Gibson, L. J.; Ashby, M. F. Cellular solids: structure and properties. 2 Ed., Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  202. Sheng, L.; Liang, Y.; Jiang, L.; Wang, Q.; Wei, T.; Qu, L.; Fan, Z. Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 2015, 25, 6545–6551.

    CAS  Google Scholar 

  203. Huang, R.; Huang, M.; Li, X.; An, F.; Koratkar, N.; Yu, Z. Z. Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices. Adv. Mater. 2018, 30, 1707025.

    Google Scholar 

  204. Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

    PubMed  Google Scholar 

  205. Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W.; Zheng, Y. R.; Xu, L.; Wang, L. J.; Xu, W. H.; Wu, H. A.; Yu, S. H. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Yang, M.; Xu, Z.; Li, P.; Guo, F.; Liu, Y.; Xiao, Y.; Gao, W.; Gao, C. Interlayer crosslinking to conquer the stress relaxation of graphene laminated materials. Mater. Horiz. 2018, 5, 1112–1119.

    CAS  Google Scholar 

  207. Xu, J.; Chen, J.; Zhang, M.; Hong, J. D.; Shi, G. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv. Electron. Mater. 2016, 2, 1600022.

    Google Scholar 

  208. Jagannadham, K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall. Mater. Trans. B 2012, 43, 316–324.

    CAS  Google Scholar 

  209. Long, Y.; Zhang, C.; Wang, X.; Gao, J.; Wang, W.; Liu, Y. Oxidation of SO2 to SO3 catalyzed by graphene oxide foams. J. Mater. Chem. 2011, 21, 13934–13941.

    CAS  Google Scholar 

  210. Xue, Y.; Yu, D.; Dai, L.; Wang, R.; Li, D.; Roy, A.; Lu, F.; Chen, H.; Liu, Y.; Qu, J. Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 12220–12226.

    CAS  PubMed  Google Scholar 

  211. Han, A.; Jin, S.; Chen, H.; Ji, H.; Sun, Z.; Du, P. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14. J. Mater. Chem. A 2015, 3, 1941–1946.

    CAS  Google Scholar 

  212. Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 2010, 132, 14067–14069.

    CAS  PubMed  Google Scholar 

  213. Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699–3705.

    Google Scholar 

  214. Chen, J.; Sheng, K.; Luo, P.; Li, C.; Shi, G. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 2012, 24, 4569–4573.

    CAS  PubMed  Google Scholar 

  215. Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H. M.; Li, F.; Ren, W. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.

    CAS  PubMed  Google Scholar 

  216. Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.; Wang, L. M.; Zhang, X. B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.

    CAS  Google Scholar 

  217. He, Y.; Zhang, N.; Wu, F.; Xu, F.; Liu, Y.; Gao, J. Graphene oxide foams and their excellent adsorption ability for acetone gas. Mater. Res. Bull. 2013, 48, 3553–3558.

    CAS  Google Scholar 

  218. Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J. Mater. Sci. 2014, 49, 4236–4245.

    CAS  Google Scholar 

  219. Niu, Z.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2010, 24, 4144–4150.

    Google Scholar 

  220. Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206–3213.

    CAS  PubMed  Google Scholar 

  221. Xi, J.; Liu, Y.; Wu, Y.; Hu, J.; Gao, W.; Zhou, E.; Chen, H.; Chen, Z.; Chen, Y.; Gao, C. Multifunctional bicontinuous composite foams with ultralow percolation thresholds. ACS Appl. Mater. Interfaces 2018, 10, 20806–20815.

    CAS  PubMed  Google Scholar 

  222. Yao, H.; Zhang, P.; Huang, Y.; Cheng, H.; Li, C.; Qu, L. Highly efficient clean water production from contaminated air with a wide humidity range. Adv. Mater. 2020, 32, 1905875.

    CAS  Google Scholar 

  223. Huang, Y.; Cheng, H.; Yang, C.; Zhang, P.; Liao, Q.; Yao, H.; Shi, G.; Qu, L. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

    PubMed  PubMed Central  Google Scholar 

  224. Ren, H.; Tang, M.; Guan, B.; Wang, K.; Yang, J.; Wang, F.; Wang, M.; Shan, J.; Chen, Z.; Wei, D.; Peng, H.; Liu, Z. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

    Google Scholar 

  225. Zhang, L.; Li, R.; Tang, B.; Wang, P. Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale 2016, 8, 14600–14607.

    CAS  PubMed  Google Scholar 

  226. Qi, G.; Yang, J.; Bao, R.; Xia, D.; Cao, M.; Yang, W.; Yang, M.; Wei, D. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 2017, 10, 802–813.

    CAS  Google Scholar 

  227. Chang, Q.; Ma, Z.; Wang, J.; Li, P.; Yan, Y.; Shi, W.; Chen, Q.; Huang, Y.; Huang, L. Hybrid graphene quantum dots@graphene foam nanosheets for dye-sensitized solar cell electrodes. Energy Technol. 2016, 4, 256–262.

    CAS  Google Scholar 

  228. Wang, Y.; Li, H.; Kong, J. Facile preparation of mesocellular graphene foam for direct glucose oxidase electrochemistry and sensitive glucose sensing. Sens. Actuators B 2014, 193, 708–714.

    CAS  Google Scholar 

  229. Kuang, J.; Liu, L.; Gao, Y.; Zhou, D.; Chen, Z.; Han, B.; Zhang, Z. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 2013, 5, 12171–12177.

    CAS  PubMed  Google Scholar 

  230. Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S. S.; Ha, J. S. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 2015, 25, 4228–4236.

    CAS  Google Scholar 

  231. Peng, L.; Zheng, Y.; Li, J.; Jin, Y.; Gao, C. Monolithic neat graphene oxide aerogel for efficient catalysis of S→O acetyl migration. ACS Catal. 2015, 5, 3387–3392.

    CAS  Google Scholar 

  232. Chen, C.; Xi, J.; Zhou, E.; Peng, L.; Chen, Z.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2017, 10, 26.

    Google Scholar 

  233. Chen, C.; Xi, J.; Han, Y.; Peng, L.; Gao, W.; Xu, Z.; Gao, C. Ultralight graphene micro-popcorns for multifunctional composite applications. Carbon 2018, 139, 545–555.

    CAS  Google Scholar 

  234. Xi, J.; Zhou, E.; Liu, Y.; Gao, W.; Ying, J.; Chen, Z.; Gao, C. Wood-based straightway channel structure for high performance microwave absorption. Carbon 2017, 124, 492–498.

    CAS  Google Scholar 

  235. Li, Z.; Xu, Z.; Liu, Y.; Wang, R.; Gao, C. Multifunctional non-woven fabrics of interfused graphene fibres. Nat. Commun. 2016, 7, 13684.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 2017, 11, 11056–11065.

    CAS  PubMed  Google Scholar 

  237. Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Composites with carbon nanotubes and graphene: an outlook. Science 2018, 362, 547.

    CAS  PubMed  Google Scholar 

  238. Li, K.; Liu, J.; Huang, Y.; Bu, F.; Xu, Y. Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. J. Mater. Chem. A 2017, 5, 5466–5474.

    CAS  Google Scholar 

  239. Zhang, Q.; Zhou, A.; Wang, J.; Wu, J.; Bai, H. Degradation-induced capacitance: a new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci. 2017, 10, 2372–2382.

    CAS  Google Scholar 

  240. Wu, J.; Zhang, Q.; Zhou, A.; Huang, Z.; Bai, H.; Li, L. Phase-separated polyaniline/graphene composite electrodes for highrate electrochemical supercapacitors. Adv. Mater. 2016, 28, 10211–10216.

    CAS  PubMed  Google Scholar 

  241. Wu, J.; Zhang, Q. E.; Wang, J.; Huang, X.; Bai, H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018, 11, 1280–1286.

    CAS  Google Scholar 

  242. Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Möbius, M. E.; Young, R. J.; Coleman, J. N. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016, 354, 1257–1260.

    CAS  PubMed  Google Scholar 

  243. Zhang, M.; Yu, X.; Ma, H.; Du, W.; Qu, L.; Li, C.; Shi, G. Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy Environ. Sci. 2018, 11, 559–565.

    CAS  Google Scholar 

  244. Zhao, J.; Zhu, Y.; Pan, F.; He, G.; Fang, C.; Cao, K.; Xing, R.; Jiang, Z. Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. J. Membr. Sci. 2015, 487, 162–172.

    CAS  Google Scholar 

  245. He, G.; He, X.; Wang, X.; Chang, C.; Zhao, J.; Li, Z.; Wu, H.; Jiang, Z. A highly proton-conducting, methanol-blocking Nafion composite membrane enabled by surface-coating crosslinked sulfonated graphene oxide. Chem. Commun. 2016, 52, 2173–2176.

    CAS  Google Scholar 

  246. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    CAS  PubMed  Google Scholar 

  247. Li, D.; Kaner, R. B. Graphene-based materials. Science 2008, 320, 1170.

    CAS  PubMed  Google Scholar 

  248. Hu, M.; Mi, B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci. 2014, 469, 80–87.

    CAS  Google Scholar 

  249. Yang, D.; Zhao, J.; Shi, J.; Wang, X.; Zhang, S.; Jiang, Z. Combination of redox assembly and biomimetic mineralization to prepare graphene-based composite cellular foams for versatile catalysis. ACS Appl. Mater. Interfaces 2017, 9, 43950–43958.

    CAS  PubMed  Google Scholar 

  250. Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180–2184.

    CAS  Google Scholar 

  251. Yun, Y. J.; Hong, W. G.; Kim, W. J.; Jun, Y.; Kim, B. H. A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics. Adv. Mater. 2013, 25, 5701–5705.

    CAS  PubMed  Google Scholar 

  252. Hu, R.; He, Y.; Huang, M.; Zhao, G.; Zhu, H. Strong adhesion of graphene oxide coating on polymer separation membranes. Langmuir 2018, 34, 10569–10579.

    CAS  PubMed  Google Scholar 

  253. Chen, T.; Wang, S.; Wu, Z.; Wang, X.; Peng, J.; Wu, B.; Cui, J.; Fang, X.; Xie, Y.; Zheng, N. A cake making strategy to prepare reduced graphene oxide wrapped plant fiber sponges for high-efficiency solar steam generation. J. Mater. Chem. A 2018, 6, 14571–14576.

    CAS  Google Scholar 

  254. Krishnamoorthy, K.; Navaneethaiyer, U.; Mohan, R.; Lee, J.; Kim, S. J. Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl. Nanosci. 2012, 2, 119–126.

    CAS  Google Scholar 

  255. Fugetsu, B.; Sano, E.; Yu, H.; Mori, K.; Tanaka, T. Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon 2010, 48, 3340–3345.

    CAS  Google Scholar 

  256. Niu, Z.; Liu, L.; Zhang, L.; Shao, Q.; Zhou, W.; Chen, X.; Xie, S. A universal strategy to prepare functional porous graphene hybrid architectures. Adv. Mater. 2014, 26, 3681–3687.

    CAS  PubMed  Google Scholar 

  257. Yang, S.; Bachman, R. E.; Feng, X.; Müllen, K. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion. Acc. Chem. Res. 2013, 46, 116–128.

    CAS  PubMed  Google Scholar 

  258. Chen, K.; Chen, L.; Chen, Y.; Bai, H.; Li, L. Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J. Mater. Chem. 2012, 22, 20968–20976.

    CAS  Google Scholar 

  259. Qiu, B.; Xing, M.; Zhang, J. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852–5855.

    CAS  PubMed  Google Scholar 

  260. Dai, Y.; Jing, Y.; Zeng, J.; Qi, Q.; Wang, C.; Goldfeld, D.; Xu, C.; Zheng, Y.; Sun, Y. Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. J. Mater. Chem. 2011, 21, 18174–18179.

    CAS  Google Scholar 

  261. Tong, Z.; Yang, D.; Shi, J.; Nan, Y.; Sun, Y.; Jiang, Z. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl. Mater. Interfaces 2015, 7, 25693–25701.

    CAS  PubMed  Google Scholar 

  262. Kong, L.; Yin, X.; Zhang, Y.; Yuan, X.; Li, Q.; Ye, F.; Cheng, L.; Zhang, L. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013, 117, 19701–19711.

    CAS  Google Scholar 

  263. Hu, C.; Mou, Z.; Lu, G.; Chen, N.; Dong, Z.; Hu, M.; Qu, L. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys. Chem. Chem. Phys. 2013, 15, 13038–13043.

    CAS  PubMed  Google Scholar 

  264. Liu, P.; Huang, Y.; Yan, J.; Yang, Y.; Zhao, Y. Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 5536–5546.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2016YFA0200200), the National Natural Science Foundation of China (Nos. 51533008, 51703194, 51873191, and 21805242), Hundred Talents Program of Zhejiang University (No. 188020*194231701/113), Key Research and Development Plan of Zhejiang Province (No. 2018C01049), Fujian Provincial Science and Technology Major Projects (No. 2018HZ0001-2), and Key Laboratory of Novel Adsorption and Separation Materials and Application Technology of Zhejiang Province (No. 512301-I21502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gao.

Additional information

Biography

Chao Gao received his Ph.D. degree from Shanghai Jiao Tong University (SJTU) in 2001. He was appointed as an Associate Professor at SJTU in 2002. He did postdoctoral research at the University of Sussex with Prof. Sir Harry Kroto and AvH research at the Bayreuth University with Prof. Axel H. E. Müller. He joined the Department of Polymer Science and Engineering, Zhejiang University, in 2008 and was promoted as a Qiushi Distinguished Professor in 2014. He leads a Nanopolymer group working on graphene chemistry, macroscopic assembly, and energy storage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, WZ., Peng, L., Liu, YJ. et al. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. Chin J Polym Sci 39, 267–308 (2021). https://doi.org/10.1007/s10118-021-2515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2515-1

Keywords

Navigation