Skip to main content
Log in

Tunable Lower Critical Solution Temperature of Poly(butyl acrylate) in Ionic Liquid Blends

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We describe the lower critical solution temperature (LCST)-type phase behavior of poly(butyl acrylate) (PBA) dissolved in hydrophobic 1-alkyl-3-methylimidazolium bis{(trifluoromethyl) sulfonyl}amide ionic liquids (ILs). The temperature-composition phase diagrams of these PBA/ILs systems are strongly asymmetric with the critical composition shifted to low concentrations of PBA. As the molecular weight increases from 5.0×103 to 2.0×104, the critical temperature decreases by about 67 °C, and the critical composition shifts to a lower concentration. Furthermore, the LCST of PBA/ILs system increases as increasing the alkyl side chain length in the imidazolium cation. Using IL blends as solvents, the LCST of PBA can be tuned almost linearly over a wide range by varying the mixing ratio of two ionic liquids without modifying the chemical structure of the polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rogers, D. R. Ionic liquids-solvents of the future? Science 2003, 302, 792–793.

    Article  Google Scholar 

  2. Susan, M. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 2005, 127, 4976–4983.

    Article  CAS  Google Scholar 

  3. Wang, M.; Xiao, X.; Zhou, X.; Li, X.; Lin, Y. Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 785–790.

    Article  CAS  Google Scholar 

  4. Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries: an overview of electrochemical studies. J. Power Sources 2009, 194, 601–609.

    Article  CAS  Google Scholar 

  5. Ueki, T.; Nakamura, Y.; Usui, R.; Kitazawa, Y.; So, S.; Lodge, T. P.; Watanabe, M. Photoreversible gelation of a triblock copolymer in an ionic liquid. Angew. Chem. Int. Ed. 2015, 127, 3061–3065.

    Article  Google Scholar 

  6. Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704235.

    Google Scholar 

  7. Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y.; Renn, M. J. Printable iongel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 2008, 7, 900–906.

    Article  CAS  Google Scholar 

  8. Xia, L.; Cui, Q.; Suo, X.; Li, Y.; Cui, X.; Yang, Q. Efficient, selective, and reversible SO2 capture with highly crosslinked ionic microgels via a selective swelling mechanism. Adv. Funct. Mater.2018, 28, 1704292.

    Article  Google Scholar 

  9. Chen, N.; Zhang, H.; Li, L.; Chen, R.; Guo, S. Ionogel electrolytes for high-performance lithium batteries: a review. Adv. Energy Mater. 2018, 8, 1702675.

    Article  Google Scholar 

  10. Lee, K. H.; Kang, M. S.; Zhang, S.; Gu, Y.; Lodge, T. P.; Frisbie, C. D. “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv. Mater. 2012, 24, 4457–4462.

    Article  CAS  Google Scholar 

  11. Schild, H. G.; Muthukumar, M.; Tirrell, D. A. Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide). Macromolecules 1991, 24, 948–952.

    Article  CAS  Google Scholar 

  12. Crespy, D.; Rossi, R. M. Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym. Int. 2007, 56, 1461–1468.

    Article  CAS  Google Scholar 

  13. Ueki, T.; Watanabe, M. Upper critical solution temperature behavior of poly(N-isopropylacrylamide) in an ionic liquid and preparation of thermo-sensitive nonvolatile gels. Chem. Lett. 2006, 35, 964–965.

    Article  CAS  Google Scholar 

  14. Ueki, T.; Watanabe, M. Lower critical solution temperature behavior of linear polymers in ionic liquids and the corresponding volume phase transition of polymer gels. Langmuir 2007, 23, 988–990.

    Article  CAS  Google Scholar 

  15. Ueki, T.; Karino, T.; Kobayashi, Y.; Shibayama, M.; Watanabe, M. Difference in lower critical solution temperature behavior between random copolymers and a homopolymer having solvatophilic and solvatophobic structures in an ionic liquid. J. Phys. Chem. B 2007, 111, 4750–4754.

    Article  CAS  Google Scholar 

  16. Tsuda, R.; Kodama, K.; Ueki, T.; Kokubo, H.; Imabayashi, S. I.; Watanabe, M. LCST-type liquid-liquid phase separation behaviour of poly(ethylene oxide) derivatives in an ionic liquid. Chem. Commun. 2008, 40, 4939–4941.

    Article  Google Scholar 

  17. Lee, H. N.; Lodge, T. P. Poly(n-butyl methacrylate) in ionic liquids with tunable lower critical solution temperatures (LCST). J. Phys. Chem. B 2011, 115, 1971–1977.

    Article  CAS  Google Scholar 

  18. Lee, H. N.; Lodge, T. P. Lower critical solution temperature (LCST) phase behavior of poly(ethylene oxide) in ionic liquids. J. Phys. Chem. Lett. 2010, 1, 1962–1966.

    Article  CAS  Google Scholar 

  19. Lee, H. N.; Newell, N.; Bai, Z.; Lodge, T. P. Unusual lower critical solution temperature phase behavior of poly(ethylene oxide) in ionic liquids. Macromolecules 2012, 45, 3627–3633.

    Article  CAS  Google Scholar 

  20. Hoarfrost, M. L.; He, Y.; Lodge, T. P. Lower critical solution temperature phase behavior of poly(n-butyl methacrylate) in ionic liquid mixtures. Macromolecules 2013, 46, 9464–9472.

    Article  CAS  Google Scholar 

  21. Ueki, T. Stimuli-responsive polymers in ionic liquids. Polym. J. 2014, 46, 646–655.

    Article  CAS  Google Scholar 

  22. Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881–6928.

    Article  CAS  Google Scholar 

  23. Ueki, T.; Watanabe, M. Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. Bull. Chem. Soc. Jpn. 2012, 85, 33–50.

    Article  CAS  Google Scholar 

  24. Nguyen, H. H.; El Ezzi, M.; Mingotaud, C.; Destarac, M.; Marty, J. D.; Lauth-de Viguerie, N. Doubly thermo-responsive copolymers in ionic liquid. Soft Matter 2016, 12, 3246–3251.

    Article  CAS  Google Scholar 

  25. Daniel, W. F. M.; Burdyńska, J.; Vatankhah-Varnoosfaderani, M.; Matyjaszewski, K.; Paturej, J.; Rubinstein, M. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016, 15, 183.

    Article  CAS  Google Scholar 

  26. Jung, J. G.; Bae, Y. C. Liquid-liquid equilibria of polymer solutions: Flory-Huggins with specific interaction. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 162–167.

    Article  CAS  Google Scholar 

  27. Lachwa, J.; Szydlowski, J.; Najdanovic-Visak, V.; Rebelo, L. P. N.; Seddon, K. R.; Nunes da Ponte, M. Evidence for lower critical solution behavior in ionic liquid solutions. J. Am. Chem. Soc. 2015, 127, 6542–6543.

    Article  Google Scholar 

  28. Matsugami, M.; Fujii, K.; Ueki, T.; Kitazawa. Y.; Umebayashi, Y.; Watanabe, M. Specific solvation of benzyl methacrylate in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquid. Anal. Sci. 2013, 29, 311–314.

    Article  CAS  Google Scholar 

  29. Ma, J. C.; Dougherty, D. A. The cation-π interaction. Chem. Rev. 1997, 97, 1303–1324.

    Article  CAS  Google Scholar 

  30. Kodama, K.; Nanashima, H.; Ueki, T.; Kokubo, H.; Watanabe, M. Lower critical solution temperature phase behavior of linear polymers in imidazolium-based ionic liquids: effects of structural modifications. Langmuir 2009, 25, 3820–3824.

    Article  CAS  Google Scholar 

  31. Canongia Lopes, J. N.; Costa Gomes, M. F.; Pádua, A. A. H. Nonpolar, polar, and associating solutes in ionic liquids. J. Phys. Chem. B 2006, 110, 16816–16818.

    Article  Google Scholar 

  32. Wang, Y.; Voth, G. A. Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 2005, 127, 12192–12193.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Funds for Distinguished Young Scholar (No. 21725401), the National Key R&D Program of China (No. 2017YFA0207800), and the China Postdoctoral Science Foundation (No. 2019M650434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jie Liu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Huang, J., Zhao, C. et al. Tunable Lower Critical Solution Temperature of Poly(butyl acrylate) in Ionic Liquid Blends. Chin J Polym Sci 39, 585–591 (2021). https://doi.org/10.1007/s10118-021-2522-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2522-2

Keywords

Navigation