Skip to main content
Log in

A Conjugated Copolymer Bearing Imidazolium-based Ionic Liquid: Electrochemical Synthesis and Electrochromic Properties

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

An imidazolium-based ionic liquid (IL) modified triphenylamine derivative, namely 1-(4-((4-(diphenylamino)benzoyl) oxy)butyl)-3-methyl imidazole tetrafluoroborate (TPAC6IL-BF4), was designed and synthesized, and further applied with 3,4-ethylene dioxythiophene (EDOT) to prepare conjugated copolymer P(EDOT:TPAC6IL-BF4) via electrochemical polymerization. The cyclic voltammetry curves show that the copolymer P(EDOT:TPAC6IL-BF4) possesses two pairs of redox peaks, which should be ascribed to the redox behaviors of EDOT and triphenylamine. The ultraviolet-visible (UV-Vis) absorption spectrum of P(EDOT:TPAC6IL-BF4) exhibits one maximum absorption peak at 580 nm and a small shoulder characteristic peak at 385 nm under neutral state which are assigned to π-π* conjugated structure of EDOT and triphenylamine. After being applied at the positive voltage, the copolymer color changes from dark blue to light blue, which is close to the color of poly(3,4-ethylenedioxythiophene) (PEDOT). Surprisingly, the copolymer P(EDOT:TPAC6IL-BF4) shows shorter switching time of 0.37 s, 0.30 s at 580 nm and 0.38 s, 0.45 s at 1100 nm compared with PEDOT. It is more intriguing that the copolymer P(EDOT:TPAC6IL-BF4) exhibits electrochromism even in free supporting electrolyte. The results confirm that the existence of imidazolium-based ionic liquid has an improvement on the ion diffusion properties and the switching time of conjugated polymer, which may provide a potential direction for the preparation of high-performance electrochromic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macher, S.; Schott, M.; Sassi, M.; Facchinetti I.; Ruffo, R.; Patriarca, G.; Beverina, L.; Posset, U.; Giffin, G. A. Löbmann P. New roll-to-roll processable PEDOT-based polymer with colorless bleached state for flexible electrochromic devices. Adv. Funct. Mater. 2020, 30, 1906254.

    Article  CAS  Google Scholar 

  2. Wang, Z.; Wang, X. Y.; Cong, S.; Chen, J.; Sun, H. Z.; Chen, Z. G.; Song, G.; Geng, F. X.; Chen, Q.; Zhao, Z. G. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities. Nat. Commun. 2020, 11, 302.

    Article  Google Scholar 

  3. Kim, J.; Rémond, M.; Kim, D.; Jang, H.; Kim, E. Electrochromic conjugated polymers for multifunctional smart windows with integrative functionalities. Adv. Mater. Technol. 2020, 5, 1900890.

    Article  CAS  Google Scholar 

  4. Yen, H. J.; Chen, C. J.; Liou, G. S. Flexible multi-colored eectrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide. Adv. Funct. Mater. 2013, 23, 5307–5316.

    Article  CAS  Google Scholar 

  5. Lv, X. J.; Li, W. J.; Ouyang, M.; Zhang, Y. J.; Wright, D. S.; Zhang, C. Polymeric electrochromic materials with donor-acceptor structures. J. Mater. Chem. C 2017, 5, 12–28.

    Article  CAS  Google Scholar 

  6. Han, Y. T.; Xing, Z.; Ma, P. Y.; Li, S.; Wang, C.; Jiang, Z. H.; Zhang, C. Design rules for improving the cycling stability of high-performance donor-acceptor-type electrochromic polymers. ACS Appl. Mater. Interfaces 2020, 12, 7529–7538.

    Article  CAS  Google Scholar 

  7. Ji, L. L.; Dai, Y. Y.; Yan, S. M.; Lv, X. J.; Su, C.; Xu, L. H.; Lv, Y. K.; Ouyang, M.; Chen, Z. F.; Zhang, C. A fast electrochromic polymer based on TEMPO substituted polytriphenylamine. Sci. Rep. 2016, 6, 30068.

    Article  CAS  Google Scholar 

  8. Ming, S. L.; Li, Z. Y.; Zhen, S. J.; Liu, P. P.; Jiang, F. G.; Nie, G. M.; Xu, J. K. High-performance D-A-D type electrochromic polymer with π spacer applied in supercapacitor. Chem. Eng. J. 2020, 390, 124572.

    Article  CAS  Google Scholar 

  9. Guo, Q. F.; Li, J. J.; Zhang, B.; Nie, G. M.; Wang, D. B. Highperformance asymmetric electrochromic-supercapacitor device based on poly(indole-6-carboxylicacid)/TiO2 nnnooom-posites. Appl. Mater. Interfaces 2019, 11, 6491–6501.

    Article  CAS  Google Scholar 

  10. Lv, X. J.; Yan, S. M.; Dai, Y. Y.; Ouyang, M.; Yang, Y.; Yu, P. F.; Zhang, C. Ion diffusion and electrochromic performance of poly(4,4′,4″-tris[4-(2-bithienyl)phenyl]amine) based on ionic liquid as electrolyte. Electrochim. Acta 2015, 186, 85–94.

    Article  CAS  Google Scholar 

  11. Gaupp, C. L.; Welsh, D. M.; Reynolds, J. R. Poly(ProDOT-Et2): a high-contrast, high-coloration efficiency electrochromic polymer. Macromolecules 2002, 23, 885–889.

    CAS  Google Scholar 

  12. Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B. MacDiarmid, A. G.; Reynolds, J. R. Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 2004, 16, 4401–4412.

    Article  CAS  Google Scholar 

  13. Colak, B.; Büyükkoyuncu, A.; Koyuncu, F. B.; Koyuncu, S. Electrochromic properties of phenantrene centered EDOT polymers. Polymer 2017, 123, 366–375.

    Article  CAS  Google Scholar 

  14. Hacioglu, S. O. Copolymerization of azobenzene-bearing monomer and 3,4-ethylenedioxythiophene (EDOT): improved electrochemical performance for electrochromic device applications. Chinese J. Polym. Sci. 2020, 38, 109–117.

    Article  CAS  Google Scholar 

  15. Chen, H. W.; Li, C. PEDOT: fundamentals and its nanocomposites for energy storage. Chinese J. Polym. Sci. 2020, 38, 435–448.

    Article  CAS  Google Scholar 

  16. Guo, Q. F.; Zhao, X. Q.; Li, Z. Y.; Wang, B. Y.; Wang, D. B.; Nie, G. M. High performance multicolor intelligent supercapacitor and its quantitative monitoring of energy storage level by electrochromic parameters. Appl. Energy Mater. 2020, 3, 2727–2736.

    Article  CAS  Google Scholar 

  17. Ming, S. L.; Lin, K. W.; Zhang, H.; Jiang, F. X.; Liu, P. P.; Xu, J. K.; Nie, G. M.; Duan, X. M. Electrochromic polymers with multiple redox couples applied to monitor energy storage states of supercapacitors. Chem. Commun. 2020, 56, 5275–5278.

    Article  CAS  Google Scholar 

  18. Arias-Pardilla, J.; Giménez-Gómez, P. A.; Peña, A.; Segura, J. L.; Otero, T. F. Synthesis, electropolymerization and characterization of a cross-linked PEDOT derivative. J. Mater. Chem. 2012, 22, 4944–4952.

    Article  CAS  Google Scholar 

  19. Hu, B.; Li, C. Y.; Liu, Z. C.; Zhang, X. L.; Luo, W.; Jin, L. Synthesis and multi-electrochromic properties of asymmetric structure polymers based on carbazole-EDOT and 2,5-dithienylpyrrole derivatives. Electrochim. Acta 2019, 305, 1–10.

    Article  CAS  Google Scholar 

  20. Cheng, X. F.; Zhao, J. S.; Cui, C. S.; Fu, Y. Z.; Zhang, X. X. Star-shaped conjugated systems derived from thienyl-derivatized poly(triphenylamine)s as active materials for electrochromic devices. J. Electroanal. Chem. 2012, 677-680, 24–30.

    Article  CAS  Google Scholar 

  21. Zhen, S. J.; Xu, J. K.; Lu, B. Y.; Zhang, S. M.; Zhao, L.; Li, J. Tuning the optoelectronic properties of polyfuran by design of furan-EDOT monomers and free-standing films with enhanced redox stability and electrochromic performances. Electrochim. Acta 2014, 146, 666–678.

    Article  CAS  Google Scholar 

  22. Liu, F. H.; Bai, J.; Yu, G.; Ma, F. H.; Hou, Y. J.; Niu, H. J. Synthesis, electrochromic properties and flash memory behaviors of novel D-A-D polyazomethines containing EDOT and thiophene units. Org. Electron. 2020, 77, 105538.

    Article  CAS  Google Scholar 

  23. Wang, B. S.; Qin, L.; Mu, T. C.; Xue, Z. M; Gao, G. H. Are ionic liquids chemically stable? Chem. Rev. 2017, 117, 7113–7131.

    Article  CAS  Google Scholar 

  24. Maruyama, S.; Prastiawan, I. B. H.; Toyabe, K.; Higuchi, Y.; Koganezawa, T.; Kubo, M.; Matsumoto, Y. Ionic conductivity in ionic liquid nano thin films. ACS Nano 2018, 12, 10509–10517.

    Article  CAS  Google Scholar 

  25. Xiao, W. C.; Yang, Q.; Zhu, S. L. Comparing ion transport in ionic liquids and polymerized ionic liquids. Sci. Rep. 2020, 10, 7825.

    Article  CAS  Google Scholar 

  26. Ouyang, M.; Yang, Y.; Lv, X. J.; Han, Y. G.; Huang, S. B.; Dai, Y. Y.; Su, C.; Lv, Y. K.; Sumita, M.; Zhang, C. Enhanced electrochromic switching speed and electrochemical stability of conducting polymer film on an ionic liquid functionalized ITO electrode. New J. Chem. 2015, 39, 5329–5335.

    Article  CAS  Google Scholar 

  27. Qian, L.; Lv, X. J.; Ouyang, M.; Tameev, A.; Katin, K.; Maslov, M.; Bi, Q.; Huang, C. H.; Zhu, R.; Zhang, C. Fast switching properties and ion diffusion behavior of polytriphenylamine derivative with pendent ionic liquid unit. ACS Appl. Mater. Interfaces 2018, 10, 32404–32412.

    Article  CAS  Google Scholar 

  28. Lo, C. K.; Shen, D. E.; Reynolds, J. R. Fine-tuning the color hue of π-conjugated black-to-clear electrochromic random copolymers. Macromolecules 2019, 52, 6773–6779.

    Article  CAS  Google Scholar 

  29. Gaupp, C. L.; Reynolds, J. R. Multichromic copolymers based on 3,6-bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole derivatives. Macromolecules 2003, 36, 6305–6315.

    Article  CAS  Google Scholar 

  30. Lv, X. J.; Huang, C. H.; Tameev, A.; Qian, L.; Zhu R.; Katin, K.; Maslov, M.; Nekrasov, A; Zhang, C. Electrochemical polymerization process and excellent electrochromic properties of ferrocene-functionalized polytriphenylamine derivative. Dyes Pigment 2019, 163, 433–440.

    Article  CAS  Google Scholar 

  31. Zhang, C.; Hua, C.; Wang, G. H.; Ouyang, M.; Ma, C. A. A novel multichromic copolymer via electrochemical copolymerization of (S)-1,1′-binaphthyl-2,2′-diyl bis(N-(6-hexanoic acid-1-yl) pyrrole) and 3,4-ethylenedioxythiophene. Electrochim. Acta 2010, 55, 4103–4111.

    Article  CAS  Google Scholar 

  32. Dai, Y. Y.; Li, W. J.; Qu, X. X.; Liu, J.; Yan, S. M.; Ouyang, M.; Lv, X. J.; Zhang C. Electrochemistry, electrochromic and color memory properties of polymer/copolymer based on novel dithienylpyrrole structure. Electrochima. Acta 2017, 229, 271–280.

    Article  CAS  Google Scholar 

  33. Lv, X. J.; Zha, L.X.; Qian, L.; Xu, X. J.; Bi, Q.; Xu, Z. Y.; Wright, D. S.; Zhang, C. Controllable fabrication of perylene bisimide self-assembled film and patterned all-solid-state electrochromic device. Chem. Eng. J. 2020, 386, 123939.

    Article  CAS  Google Scholar 

  34. Lv, X. J.; Bi, Q.; Tameev, A.; Zhang, Y. J.; Qian L.; Ouyang, M.; Zhang, C. A new green-to-transmissive polymer with electroactive poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) as an interface layer for achieving high-performance electrochromic device. J. Polym. Sci. 2020, 58, 937–947.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51703199 and 51673174) and Natural Science Foundation of Zhejiang Province of China (No. LZ17E030001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, XJ., Xu, LB., Qian, L. et al. A Conjugated Copolymer Bearing Imidazolium-based Ionic Liquid: Electrochemical Synthesis and Electrochromic Properties. Chin J Polym Sci 39, 537–544 (2021). https://doi.org/10.1007/s10118-021-2525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2525-z

Keywords

Navigation