Skip to main content
Log in

Prospects for the Use of Methylotrophic Yeast in the Creation of Industrial Producers of Feed Enzymes

  • PROBLEMS AND PROSPECTS
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

In recent years, mycelial fungi have faced competition from recombinant yeast as producers of feed enzymes. An intensive study on genetic diversity identified the yeast genes encoding feed enzymes, the specific activity of which is much higher than that in mycelial fungi. In addition, these genes were expressed in yeast much more efficiently than in mycelial fungi. The use of yeast recombinant producers allowed the expansion of the production of a line of industrial enzymes with a significant reduction in their cost. The advantages of yeast producers of recombinant enzymes include the ability to obtain monoenzymes, which are part of various enzyme complexes used for different purposes. Pichia pastoris methylotrophic yeast is the most attractive subject for the creation of recombinant protein-producing strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Choct, M., Enzymes for the feed industry: past, present and future, World Poult. Sci. J., 2006, vol. 62, no. 1, pp. 5–16.

    Article  Google Scholar 

  2. Egli, I., Davidsson, L., Juillerat, M.A., et al., The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding, J. Food Sci., 2002, vol. 67, no. 9, pp. 3484–3488.

    Article  CAS  Google Scholar 

  3. Goswami, G.K. and Rawat, S., Microbial xylanase and their applications: a review, Int. J. Curr. Res. Acad. Rev., 2015, vol. 3, no. 6, pp. 436–450.

    CAS  Google Scholar 

  4. Butt, M.S., Tahir-Nadeem, M., Ahmad, Z., et al., Xylanases in baking industry, Food Technol. Biotechnol., 2008, vol. 46, no. 1, pp. 22–31.

    CAS  Google Scholar 

  5. Odeniyi, O.A., Onilude, A.A., and Ayodele, M.A., Characteristics of a β-1,4-D-endoglucanase from Trichoderma virens wholly applied in a palm-fruit husk-based diet for poultry, Braz. J. Microbiol., 2012, vol. 43, no. 4, pp. 1467–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma, A. and Nakas, J.P., Preliminary characterization of laminarinase from Trichoderma longibrachiatum,Enzyme Microb. Technol., 1987, vol. 9, pp. 89–93.

    Article  CAS  Google Scholar 

  7. Lei, X.G., Weaver, J.D., Mullaney, E., et al., Phytase, a new life for an “old” enzyme, Annu. Rev. Anim. Biosci., 2013, vol. 1, pp. 283–309.

    Article  PubMed  CAS  Google Scholar 

  8. Okunev, O.N., Bakkarevich, A.O., Sinitsyn, A.P., and Chernoglazov, V.M., Filamentous fungus Trichoderma longibrachiatum strain—producer of cellulases, beta-glucanases, and xylanases, RF Patent No. 2303065, Byull. Izobret., 2007, no. 20.

  9. Filipovic, B. and Pokorny, M., Procedure for the production of beta glucanase from the mould Mucor miehei and beta glucanase gained by this procedure, Patent No. SI9110531A, 1997.

  10. Nissen, B.A. and Hovland, J., Preparation of the enzyme β-glucanase by fermentation of fungi, Patent no. US4588690A, 1986.

  11. Wyss, M., Brugger, R., Kronenberger, A., et al., Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties, Appl. Environ. Microbiol., 1999, vol. 65, pp. 367–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hansen, P.K., Wagner, P., Mullertz, A., and Knap, I.H., Animal feed additives comprising xylanase, Patent no. WO1996023062A1, 1996.

  13. Matsui, T., Fuglsang, C.C., Svendsen, A., and Fukuyama, S., Phytase variants, Patent no. EP2295553A1, 2011, Bull. 2011/11.

  14. Anadón, A., Arzo, M.A., Bories, G., Brantom, P., et al., Opinion of the scientific panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of the enzymatic preparation Natugrain Wheat TS, EFSA J., 2007, vol. 474, pp. 1–11.

    Google Scholar 

  15. Gravesen, T.N. and Derkx, P.M.F., Talaromyces emersonii xylanase, Patent No. WO2001042433A3, 2001.

  16. Mittal, A., Gupta, V., Singh, G., et al., Phytase: a boom in food industry, Octa. J. Biosci., 2013, vol. 1, no. 2, pp. 158–169.

    Google Scholar 

  17. Rantanen, H., Virkki, L., Tuomainen, P., et al., Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-β-D-xylanase, Carbohydr. Polym., 2007, vol. 68, no. 2, pp. 350–359.

    Article  CAS  Google Scholar 

  18. Tenkanen, M., Puls, J., and Poutanen, K., Two major xylanases of Trichoderma reesei. Enzyme Microb. Technol., 1992, vol. 14, pp. 566–574.

    Article  CAS  Google Scholar 

  19. Khucharoenphaisan, K., Tokuyama, S., and Kitpreechavanich, V., Purification and characterization of a high-thermostable β-xylanase from newly isolated Thermomyces lanuginosus THKU-49, Mycoscience, 2010, vol. 51, no. 6, pp. 405–410.

    Article  CAS  Google Scholar 

  20. Enzymes in Farm Animal Nutrition, Bedford, M.R. and Partridge, G.G., Eds., 2nd ed., UK: CAB International, 2010.

    Google Scholar 

  21. Dijkerman, R., Ledeboer, J., Camp, H.D., et al., The anaerobic fungus Neocallimastix sp. strain L2: growth and production of (hemi)cellulolytic enzymes on a range of carbohydrate substrates, Curr. Microbiol., 1997, vol. 34, pp. 91–96.

    Article  CAS  PubMed  Google Scholar 

  22. Goswami, G.K., Krishnamohan, M., Nain, V., et al., Cloning and heterologous expression of cellulose free thermostable xylanase from Bacillus brevis, Springerplus, 2014, vol. 10, pp. 3–20.

    Google Scholar 

  23. Nagar, S., Mittal, A., Kumar, D., et al., Production of alkali tolerant cellulase free xylanase in high levels by Bacillus pumilus SV-205, Int. J. Biol. Macromol., 2012, vol. 50, no. 2, pp. 414–420.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, H.C., Sun, M.Z., Meng, L.C., et al., Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production, J. Microbiol. Biotechnol., 2014, vol. 24, no. 4, pp. 489–496.

    Article  CAS  PubMed  Google Scholar 

  25. Dheeran, P., Nandhagopal, N., Kumar, S., et al., A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut, J. Ind. Microbiol. Biotechnol., 2012, vol. 39, no. 6, pp. 851–860.

    Article  CAS  PubMed  Google Scholar 

  26. Raj, A., Kumar, S., Singh, S.K., et al., Characterization of a new Providencia sp. strain X1 producing multiple xylanases on wheat bran, Sci. World J., 2013, vol. 2013, no. 4, pp. 386769.

    Article  CAS  Google Scholar 

  27. Wilkinson, S.J., Walk, C.L., Bedford, M.R., et al., Influence of conditioning temperature on the post-pelleting recovery and efficacy of 2 microbial phytases for broiler chicks, J. Appl. Poultry Res., 2013, vol. 22, pp. 308–313.

    Article  Google Scholar 

  28. Pellengahr, K.S. Leuthner, B., et al., Buttiauxella sp. phytase variants, Patent No. EP2283124B1, 2016.

  29. Aquilina, G. and Bampidis, V., Scientific opinion on the safety and efficacy of Axtra PHY 15000 L (6-phytase) as a feed additive for poultry and porcine species, EFSA J., 2015, vol. 13, p. 4275.

    Google Scholar 

  30. Clare, J.J., Rayment, F.B., Ballantine, S.P., et al., High-level expression of tetanus toxin fragment C in Pich-ia pastoris strains containing multiple tandem integrations of the gene, Biotechnology, 1991, vol. 9, pp. 455–460.

    CAS  PubMed  Google Scholar 

  31. Romanos, M.A., Clare, J.J., Beesley, K.M., et al., Recombinant Bordetella pertussis pertactin (P69) from the yeast Pichia pastoris: high-level production and immunological properties, Vaccine, 1991, vol. 9, pp. 901–906.

    Article  CAS  PubMed  Google Scholar 

  32. Choi, B.-K. and Jimenez-Flores, R., Study of putative glycosylationsite in bovine beta-casein introduced by PCR-based site-directed mutagenesis, J. Agric. Food Chem., 1996, vol. 44, pp. 358–364.

    Article  CAS  Google Scholar 

  33. Canales, M., Enriquez, A., Ramos, E., et al., Large-scale production in Pichia pastoris of the recombinant vaccine Gavac against cattle tick, Vaccine, 1997, vol. 15, pp. 414–422.

    Article  CAS  PubMed  Google Scholar 

  34. Rogelj, B., Strukelj, B., Bosch, D., et al., Expression, purification and characterization of equistatin in Pichia pastoris,Protein Expr. Purif., 2000, vol. 19, pp. 329–334.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, W., Xiong, A., Fu, X., et al., High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris,Appl. Biochem. Biotechnol., 2010, vol. 162, pp. 2157–2165.

    Article  CAS  PubMed  Google Scholar 

  36. Xiong, A.S., Yao, Q.H., Peng, R.H., et al., High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris,App. Microbiol. Biotech., 2006, vol. 72, pp. 1039–1047.

    Article  CAS  Google Scholar 

  37. Luo, H., Huang, H., Yang, P., et al., A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris,Curr. Microbiol., 2007, vol. 55, no. 3, pp. 185–192.

    Article  CAS  PubMed  Google Scholar 

  38. Fang, W., Gao, H., Cao, Y., et al., Cloning and expression of a xylanase xynB from Aspergillus niger IA-001 in Pichia pastoris,J. Basic Microbiol., 2014, vol. 54, pp. 190–199.

    Article  CAS  Google Scholar 

  39. Wang, J., Li, Y., and Liu, D., Improved production of Aspergillus usamii endo-β-1,4-xylanase in Pichia pastoris via combined strategies. Biomed. Res. Int. 2016. P. 3265895.

  40. He, J., Yu, B., Zhang, K., et al., Expression of endo-1,4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme, BMC Biotechnol., 2009, vol. 16, pp. 9–56.

    Google Scholar 

  41. Damaso, M.C., Almeida, M.S., Kurtenbach, E., et al., Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris,Appl. Environ. Microbiol., 2003, vol. 69, no. 10, pp. 6064–6072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramchuran, S.O., Mateus, B., Holst, O., et al., The methylotrophic yeast Pichia pastoris as a host for the expression and production of thermostable xylanase from the bacterium Rhodothermus marinus,FEMS Yeast Res., 2005, vol. 5, no. 9, pp. 839–850.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, M.Q. and Liu, G., Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it, Protein Expr. Purif., 2008, vol. 57, no. 2, pp. 101–107.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, G.-M., Hu, Y., Zhuang, Y.-G., et al., Molecular cloning and heterologous expression of an alkaline xylanase from Bacillus pumilus HBP8 in Pichia pastoris,Biocatal. Biotransform., 2006, vol. 24, pp. 371–379.

    Article  CAS  Google Scholar 

  45. Hua, C., Yi, H., and Jiao, L., Cloning and expression of the endo-1,3 (4)-β-glucanase gene from Paecilomyces sp. FLH30 and characterization of the recombinant enzyme, Biosci. Biotechnol. Biochem., 2011, vol. 75, no. 9, pp. 1807–1812.

    Article  CAS  PubMed  Google Scholar 

  46. Luo, H., Yang, J., Yang, P., et al., Gene cloning and expression of a new acidic family 7 endo-beta-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1, Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 4, pp. 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  47. Li, J., Xu, X., Shi, P., et al., Overexpression and characterization of a novel endo-β-1,3 (4)-glucanase from thermophilic fungus Humicola insolens Y1, Protein Expr. Purif., 2017, vol. 138, pp. 63–68.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, J., Kang, L., Liu, Z., et al., Gene cloning, heterologous expression and characterization of a Coprinopsis cinerea endo-β-1,3 (4)-glucanase expressed in Pichia pastoris,Fungal Biol., 2017, vol. 121, no. 1, pp. 61–68.

    Article  CAS  PubMed  Google Scholar 

  49. Krainer, F.W., Dietzsch, C., and Hajek, T., Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway, Microb. Cell Fact., 2012, vol. 11, p. 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hatfield, G.W. and Roth, D.A., Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and translation engineering, Biotechnol. Annu. Rev., 2007, vol. 13, pp. 27–42.

    Article  CAS  PubMed  Google Scholar 

  51. Gueldener, U., Heinisch, J., Koehler, G.J., et al., A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast, Nucleic Acids Res., 2002, vol. 30, no. 6, pp. 2–8.

    Article  Google Scholar 

  52. Tsygankov, M.A. and Padkina, M.V., Effect of the PDI gene overexpression on the production of heterologous proteins in the yeast Pichia pastoris,Ekol. Genet., 2017, vol. 15, no. 2, pp. 21–30.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out at the Multipurpose Scientific Installation of the All-Russia Collection of Industrial Microorganisms of the Kurchatov Institute National Resource Center.

Funding

The work was carried out with the financial support of the Ministry of Education and Science of Russia (Unique Project Identifier RFMEFI60717X0180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Mel’kina.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: CL—culture liquid; NSP—nonstarch polisaccharides; UPR—unfolded protein response.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mel’kina, O.E., Sineoky, S.P. Prospects for the Use of Methylotrophic Yeast in the Creation of Industrial Producers of Feed Enzymes. Appl Biochem Microbiol 56, 815–821 (2020). https://doi.org/10.1134/S0003683820080050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820080050

Keywords:

Navigation